You are not logged in.
Pages: 1
Oxygen
Gist
Oxygen is a chemical element with the symbol O and atomic number 8. It is a colorless, odorless, and tasteless gas essential for life, as it is required for respiration in most living organisms and supports combustion. It's also a highly reactive element, readily forming oxides with other elements and compounds.
Oxygen is a chemical element – a substance that contains only one type of atom. Its official chemical symbol is O, and its atomic number is 8, which means that an oxygen atom has eight protons in its nucleus. Oxygen is a gas at room temperature and has no colour, smell or taste. Oxygen is found naturally as a molecule.
Summary
Oxygen is a chemical element; it has symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and a potent oxidizing agent that readily forms oxides with most elements as well as with other compounds. Oxygen is the most abundant element in Earth's crust, making up almost half of the Earth's crust in the form of various oxides such as water, carbon dioxide, iron oxides and silicates.[ It is the third-most abundant element in the universe after hydrogen and helium.
At standard temperature and pressure, two oxygen atoms will bind covalently to form dioxygen, a colorless and odorless diatomic gas with the chemical formula O2. Dioxygen gas currently constitutes approximately 20.95% molar fraction of the Earth's atmosphere, though this has changed considerably over long periods of time in Earth's history. A much rarer triatomic allotrope of oxygen, ozone (O3), strongly absorbs the UVB and UVC wavelengths and forms a protective ozone layer at the lower stratosphere, which shields the biosphere from ionizing ultraviolet radiation. However, ozone present at the surface is a corrosive byproduct of smog and thus an air pollutant.
All eukaryotic organisms, including plants, animals, fungi, algae and most protists, need oxygen for cellular respiration, a process that extracts chemical energy by the reaction of oxygen with organic molecules derived from food and releases carbon dioxide as a waste product. Many major classes of organic molecules in living organisms contain oxygen atoms, such as proteins, nucleic acids, carbohydrates and fats, as do the major constituent inorganic compounds of animal shells, teeth, and bone. Most of the mass of living organisms is oxygen as a component of water, the major constituent of lifeforms. Oxygen in Earth's atmosphere is produced by biotic photosynthesis, in which photon energy in sunlight is captured by chlorophyll to split water molecules and then react with carbon dioxide to produce carbohydrates and oxygen is released as a byproduct. Oxygen is too chemically reactive to remain a free element in air without being continuously replenished by the photosynthetic activities of autotrophs such as cyanobacteria, chloroplast-bearing algae and plants.
Oxygen was isolated by Michael Sendivogius before 1604, but it is commonly believed that the element was discovered independently by Carl Wilhelm Scheele, in Uppsala, in 1773 or earlier, and Joseph Priestley in Wiltshire, in 1774. Priority is often given for Priestley because his work was published first. Priestley, however, called oxygen "dephlogisticated air", and did not recognize it as a chemical element. In 1777 Antoine Lavoisier first recognized oxygen as a chemical element and correctly characterized the role it plays in combustion.
Common industrial uses of oxygen include production of steel, plastics and textiles, brazing, welding and cutting of steels and other metals, rocket propellant, oxygen therapy, and life support systems in aircraft, submarines, spaceflight and diving.
Details
Oxygen (O), nonmetallic chemical element of Group 16 (VIa, or the oxygen group) of the periodic table. Oxygen is a colourless, odourless, tasteless gas essential to living organisms, being taken up by animals, which convert it to carbon dioxide; plants, in turn, utilize carbon dioxide as a source of carbon and return the oxygen to the atmosphere. Oxygen forms compounds by reaction with practically any other element, as well as by reactions that displace elements from their combinations with each other; in many cases, these processes are accompanied by the evolution of heat and light and in such cases are called combustions. Its most important compound is water.
Element Properties
atomic number : 8
atomic weight: 15.9994
melting point : −218.4 °C (−361.1 °F)
boiling point : −183.0 °C (−297.4 °F)
density (1 atm, 0 °C) : 1.429 g/litre
oxidation states : −1, −2, +2 (in compounds with fluorine)
History
Oxygen was discovered about 1772 by a Swedish chemist, Carl Wilhelm Scheele, who obtained it by heating potassium nitrate, mercuric oxide, and many other substances. An English chemist, Joseph Priestley, independently discovered oxygen in 1774 by the thermal decomposition of mercuric oxide and published his findings the same year, three years before Scheele published. In 1775–80, French chemist Antoine-Laurent Lavoisier, with remarkable insight, interpreted the role of oxygen in respiration as well as combustion, discarding the phlogiston theory, which had been accepted up to that time; he noted its tendency to form acids by combining with many different substances and accordingly named the element oxygen (oxygène) from the Greek words for “acid former.”
Occurrence and properties
At 46 percent of the mass, oxygen is the most plentiful element in Earth’s crust. The proportion of oxygen by volume in the atmosphere is 21 percent and by weight in seawater is 89 percent. In rocks, it is combined with metals and nonmetals in the form of oxides that are acidic (such as those of sulfur, carbon, aluminum, and phosphorus) or basic (such as those of calcium, magnesium, and iron) and as saltlike compounds that may be regarded as formed from the acidic and basic oxides, as sulfates, carbonates, silicates, aluminates, and phosphates. Plentiful as they are, these solid compounds are not useful as sources of oxygen, because separation of the element from its tight combinations with the metal atoms is too expensive.
Below −183 °C (−297 °F), oxygen is a pale blue liquid; it becomes solid at about −218 °C (−361 °F). Pure oxygen is 1.1 times heavier than air.
During respiration, animals and some bacteria take oxygen from the atmosphere and return to it carbon dioxide, whereas by photosynthesis, green plants assimilate carbon dioxide in the presence of sunlight and evolve free oxygen. Almost all the free oxygen in the atmosphere is due to photosynthesis. About 3 parts of oxygen by volume dissolve in 100 parts of fresh water at 20 °C (68 °F), slightly less in seawater. Dissolved oxygen is essential for the respiration of fish and other marine life.
Natural oxygen is a mixture of three stable isotopes: oxygen-16 (99.759 percent), oxygen-17 (0.037 percent), and oxygen-18 (0.204 percent). Several artificially prepared radioactive isotopes are known. The longest-lived, oxygen-15 (124-second half-life), has been used to study respiration in mammals.
Allotropy
Oxygen has two allotropic forms, diatomic (O2) and triatomic (O3, ozone). The properties of the diatomic form suggest that six electrons bond the atoms and two electrons remain unpaired, accounting for the paramagnetism of oxygen. The three atoms in the ozone molecule do not lie along a straight line.
The process, as written, is endothermic (energy must be provided to make it proceed); conversion of ozone back into diatomic oxygen is promoted by the presence of transition metals or their oxides. Pure oxygen is partly transformed into ozone by a silent electrical discharge; the reaction is also brought about by absorption of ultraviolet light of wavelengths around 250 nanometres (nm, the nanometre, equal to {10}^{-9} metre); occurrence of this process in the upper atmosphere removes radiation that would be harmful to life on the surface of the Earth. The pungent odour of ozone is noticeable in confined areas in which there is sparking of electrical equipment, as in generator rooms. Ozone is light blue; its density is 1.658 times that of air, and it has a boiling point of −112 °C (−170 °F) at atmospheric pressure.
Ozone is a powerful oxidizing agent, capable of converting sulfur dioxide to sulfur trioxide, sulfides to sulfates, iodides to iodine (providing an analytical method for its estimation), and many organic compounds to oxygenated derivatives such as aldehydes and acids. The conversion by ozone of hydrocarbons from automotive exhaust gases to these acids and aldehydes contributes to the irritating nature of smog. Commercially, ozone has been used as a chemical reagent, as a disinfectant, in sewage treatment, water purification, and bleaching textiles.
Commercial production and use
When required in tonnage quantities, oxygen is prepared by the fractional distillation of liquid air. Of the main components of air, oxygen has the highest boiling point and therefore is less volatile than nitrogen and argon. The process takes advantage of the fact that when a compressed gas is allowed to expand, it cools. Major steps in the operation include the following: (1) Air is filtered to remove particulates; (2) moisture and carbon dioxide are removed by absorption in alkali; (3) the air is compressed and the heat of compression removed by ordinary cooling procedures; (4) the compressed and cooled air is passed into coils contained in a chamber; (5) a portion of the compressed air (at about 200 atmospheres pressure) is allowed to expand in the chamber, cooling the coils; (6) the expanded gas is returned to the compressor with multiple subsequent expansion and compression steps resulting finally in liquefaction of the compressed air at a temperature of −196 °C; (7) the liquid air is allowed to warm to distill first the light rare gases, then the nitrogen, leaving liquid oxygen. Multiple fractionations will produce a product pure enough (99.5 percent) for most industrial purposes.
The steel industry is the largest consumer of pure oxygen in “blowing” high carbon steel—that is, volatilizing carbon dioxide and other nonmetal impurities in a more rapid and more easily controlled process than if air were used. The treatment of sewage by oxygen holds promise for more efficient treatment of liquid effluents than other chemical processes. Incineration of wastes in closed systems using pure oxygen has become important. The so-called LOX of rocket oxidizer fuels is liquid oxygen; the consumption of LOX depends upon the activity of space programs. Pure oxygen is used in submarines and diving bells.
Commercial oxygen or oxygen-enriched air has replaced ordinary air in the chemical industry for the manufacture of such oxidation-controlled chemicals as acetylene, ethylene oxide, and methanol. Medical applications of oxygen include use in oxygen tents, inhalators, and pediatric incubators. Oxygen-enriched gaseous anesthetics ensure life support during general anesthesia. Oxygen is significant in a number of industries that use kilns.
Additional Information:
Appearance
A colourless, odourless gas.
Uses
The greatest commercial use of oxygen gas is in the steel industry. Large quantities are also used in the manufacture of a wide range of chemicals including nitric acid and hydrogen peroxide. It is also used to make epoxyethane (ethylene oxide), used as antifreeze and to make polyester, and chloroethene, the precursor to PVC.
Oxygen gas is used for oxy-acetylene welding and cutting of metals. A growing use is in the treatment of sewage and of effluent from industry.
Biological role
Oxygen first appeared in the Earth’s atmosphere around 2 billion years ago, accumulating from the photosynthesis of blue-green algae. Photosynthesis uses energy from the sun to split water into oxygen and hydrogen. The oxygen passes into the atmosphere and the hydrogen joins with carbon dioxide to produce biomass.
When living things need energy they take in oxygen for respiration. The oxygen returns to the atmosphere in the form of carbon dioxide.
Oxygen gas is fairly soluble in water, which makes aerobic life in rivers, lakes and oceans possible.
Natural abundance
Oxygen makes up 21% of the atmosphere by volume. This is halfway between 17% (below which breathing for unacclimatised people becomes difficult) and 25% (above which many organic compounds are highly flammable). The element and its compounds make up 49.2% by mass of the Earth’s crust, and about two-thirds of the human body.
There are two key methods used to obtain oxygen gas. The first is by the distillation of liquid air. The second is to pass clean, dry air through a zeolite that absorbs nitrogen and leaves oxygen. A newer method, which gives oxygen of a higher purity, is to pass air over a partially permeable ceramic membrane.
In the laboratory it can be prepared by the electrolysis of water or by adding a manganese(IV) oxide catalyst to aqueous hydrogen peroxide.
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Pages: 1