You are not logged in.
Pages: 1
Computer Keyboard/Peripherals
Gist
A keyboard is an input device that allows you to type letters, numbers, and symbols into your computer or other electronic device. It usually has a set of keys arranged in a specific layout, such as QWERTY or DVORAK.
A keyboard generally has five main types of keys: alphanumeric keys (letters, numbers, and symbols), function keys (F1-F12), navigation keys (arrow keys, Home, End, Page Up, Page Down), modifier keys (Shift, Ctrl, Alt), and special keys (Enter, Escape, Caps Lock, etc.).
Keyboards contain mechanical or electromechanical switches that change the flow of current through the keyboard when depressed. A microprocessor embedded in the keyboard interprets these changes and sends a signal to the computer.
Summary
A peripheral device, is any of various devices (including sensors) used to enter information and instructions into a computer for storage or processing and to deliver the processed data to a human operator or, in some cases, a machine controlled by the computer. Such devices make up the peripheral equipment of modern digital computer systems.
Peripherals are commonly divided into three kinds: input devices, output devices, and storage devices (which partake of the characteristics of the first two). An input device converts incoming data and instructions into a pattern of electrical signals in binary code that are comprehensible to a digital computer. An output device reverses the process, translating the digitized signals into a form intelligible to the user. At one time punched-card and paper-tape readers were extensively used for inputting, but these have now been supplanted by more efficient devices.
Input devices include typewriter-like keyboards; handheld devices such as the mouse, trackball, joystick, trackpad, and special pen with pressure-sensitive pad; microphones, webcams, and digital cameras. They also include sensors that provide information about their environment—temperature, pressure, and so forth—to a computer. Another direct-entry mechanism is the optical laser scanner (e.g., scanners used with point-of-sale terminals in retail stores) that can read bar-coded data or optical character fonts.
Output equipment includes video display terminals, ink-jet and laser printers, loudspeakers, headphones, and devices such as flow valves that control machinery, often in response to computer processing of sensor input data. Some devices, such as video display terminals and USB hubs, may provide both input and output. Other examples are devices that enable the transmission and reception of data between computers—e.g., modems and network interfaces.
USB flash drive inserted in a laptopDevices such as flash drives played an important role in backing up and transferring data.
Most auxiliary storage devices—as, for example, CD-ROM and DVD drives, flash memory drives, and external disk drives also double as input/output devices (see computer memory). Even devices such as smartphones, tablet computers, and wearable devices like fitness trackers and smartwatches can be considered as peripherals, albeit ones that can function independently.
Various standards for connecting peripherals to computers exist. For example, serial advanced technology attachment (SATA) is the most common interface, or bus, for magnetic disk drives. A bus (also known as a port) can be either serial or parallel, depending on whether the data path carries one bit at a time (serial) or many at once (parallel). Serial connections, which use relatively few wires, are generally simpler than parallel connections. Universal serial bus (USB) is a common serial bus.
Details
A computer keyboard is a built-in or peripheral input device modeled after the typewriter keyboard which uses an arrangement of buttons or keys to act as mechanical levers or electronic switches. Replacing early punched cards and paper tape technology, interaction via teleprinter-style keyboards have been the main input method for computers since the 1970s, supplemented by the computer mouse since the 1980s, and the touchscreen since the 2000s.
Keyboard keys (buttons) typically have a set of characters engraved or printed on them, and each press of a key typically corresponds to a single written symbol. However, producing some symbols may require pressing and holding several keys simultaneously or in sequence. While most keys produce characters (letters, numbers or symbols), other keys (such as the escape key) can prompt the computer to execute system commands. In a modern computer, the interpretation of key presses is generally left to the software: the information sent to the computer, the scan code, tells it only which physical key (or keys) was pressed or released.
In normal usage, the keyboard is used as a text entry interface for typing text, numbers, and symbols into application software such as a word processor, web browser or social media app. Touchscreens use virtual keyboards.
History
Typewriters are the definitive ancestor of all key-based text entry devices, but the computer keyboard as a device for electromechanical data entry and communication largely comes from the utility of two devices: teleprinters (or teletypes) and keypunches. It was through such devices that modern computer keyboards inherited their layouts.
As early as the 1870s, teleprinter-like devices were used to simultaneously type and transmit stock market text data from the keyboard across telegraph lines to stock ticker machines to be immediately copied and displayed onto ticker tape.[citation needed] The teleprinter, in its more contemporary form, was developed from 1907 to 1910 by American mechanical engineer Charles Krum and his son Howard, with early contributions by electrical engineer Frank Pearne. Earlier models were developed separately by individuals such as Royal Earl House and Frederick G. Creed.
Earlier, Herman Hollerith developed the first keypunch devices, which soon evolved to include keys for text and number entry akin to normal typewriters by the 1930s.
The keyboard on the teleprinter played a strong role in point-to-point and point-to-multipoint communication for most of the 20th century, while the keyboard on the keypunch device played a strong role in data entry and storage for just as long. The development of some of the earliest computers incorporated electric typewriter keyboards: the development of the ENIAC computer incorporated a keypunch device as both the input and paper-based output device, and the BINAC computer made use of an electromechanically controlled typewriter for both data entry onto magnetic tape (instead of paper) and data output.
The keyboard remained the primary, most integrated computer peripheral well into the era of personal computing until the introduction of the mouse as a consumer device in 1984. By this time, text-only user interfaces with sparse graphics gave way to comparatively graphics-rich icons on screen. However, keyboards remain central to human-computer interaction to the present though mobile personal computing devices such as smartphones and tablets use a virtual keyboard.
Types and standards
Different types of keyboards are available and each is designed with a focus on specific features that suit particular needs. Today, most full-size keyboards use one of three different mechanical layouts, usually referred to as simply ISO (ISO/IEC 9995-2), ANSI (ANSI-INCITS 154-1988), and JIS (JIS X 6002-1980), referring roughly to the organizations issuing the relevant worldwide, United States, and Japanese standards, respectively. (In fact, the mechanical layouts referred such as "ISO" and "ANSI" comply to the primary recommendations in the named standards, while each of these standards in fact also allows the other way.) ANSI standard alphanumeric keyboards have keys that are on three-quarter inch centers (0.75 inches (19 mm)), and have a key travel of at least 0.15 inches (3.8 mm).
Modern keyboard models contain a set number of total keys according to their given standard, described as 101, 104, 105, etc. and sold as "Full-size" keyboards. Modern keyboards matching US conventions typically have 104 keys while the 105 key layout is the norm in the rest of the world. This number is not always followed, and individual keys or whole sections are commonly skipped for the sake of compactness or user preference. The most common choice is to not include the numpad, which can usually be fully replaced by the alphanumeric section; such designs are referred to as "tenkeyless" (or TKL). Laptops and wireless peripherals often lack duplicate keys and ones seldom used. Function- and arrow keys are nearly always present.
Another factor determining the size of a keyboard is the size and spacing of the keys. The reduction is limited by the practical consideration that the keys must be large enough to be easily pressed by fingers. Alternatively, a tool is used for pressing small keys.
Desktop or full-size
Desktop computer keyboards include alphabetic characters and numerals (and usually additionally a numeric keypad), typographical symbols and punctuation marks, one or more currency symbols and other special characters, diacritics and a variety of function keys. The repertoire of glyphs engraved on the keys of a keyboard accords with national conventions and language needs. Computer keyboards are similar to electric-typewriter keyboards but contain additional keys, such as the command key or Windows keys.
Laptop-size
Keyboards on laptops usually have a shorter travel distance and a reduced set of keys.
Keyboards on laptops and notebook computers usually have a shorter travel distance for the keystroke, shorter over travel distance, and a reduced set of keys. They may not have a numeric keypad, and the function keys may be placed in locations that differ from their placement on a standard, full-sized keyboard. The switch mechanism for a laptop keyboard is more likely to be a scissor switch than a rubber dome; this is opposite the trend for full-size keyboards.
Flexible keyboards
Flexible keyboards are a junction between normal type and laptop type keyboards: normal from the full arrangement of keys, and laptop from the short key distance. Additionally, the flexibility allows the user to fold/roll the keyboard for better storage and transfer. However, for typing the keyboard must be resting on a hard surface. The vast majority of flexible keyboards in the market are made from silicone; this material makes them water- and dust-proof. This is useful in hospitals,[11] where keyboards are subjected to frequent washing, and other dirty or must-be-clean environments.
Handheld
Handheld ergonomic keyboards are designed to be held like a game controller, and can be used as such, instead of laid out flat on top of a table surface.
Typically handheld keyboards hold all the alphanumeric keys and symbols that a standard keyboard would have, yet only be accessed by pressing two sets of keys at once; one acting as a function key similar to a 'Shift' key that would allow for capital letters on a standard keyboard. Handheld keyboards allow the user the ability to move around a room or to lean back on a chair while also being able to type in front or away from the computer. Some variations of handheld ergonomic keyboards also include a trackball mouse that allow mouse movement and typing included in one handheld device.
Thumb-sized
Smaller external keyboards have been introduced for devices without a built-in keyboard, such as PDAs, and smartphones. Small keyboards are also useful where there is a limited workspace.
A thumb keyboard (thumb board) is used in some personal digital assistants such as the Palm Treo and BlackBerry and some Ultra-Mobile PCs such as the OQO.
Numeric keyboards contain only numbers, mathematical symbols for addition, subtraction, multiplication, and division, a decimal point, and several function keys. They are often used to facilitate data entry with smaller keyboards that do not have a numeric keypad, commonly those of laptop computers. These keys are collectively known as a numeric pad, numeric keys, or a numeric keypad, and it can consist of the following types of keys: Arithmetic operators, numbers, arrow keys, Navigation keys, Num Lock and Enter key.
Multifunctional
Multifunctional keyboards provide additional function beyond the standard keyboard. Many are programmable, configurable computer keyboards and some control multiple PCs, workstations and other information sources, usually in multi-screen work environments. Users have additional key functions as well as the standard functions and can typically use a single keyboard and mouse to access multiple sources.
Multifunctional keyboards may feature customised keypads, fully programmable function or soft keys for macros/pre-sets, biometric or smart card readers, trackballs, etc. New generation multifunctional keyboards feature a touchscreen display to stream video, control audio visual media and alarms, execute application inputs, configure individual desktop environments, etc. Multifunctional keyboards may also permit users to share access to PCs and other information sources. Multiple interfaces (serial, USB, audio, Ethernet, etc.) are used to integrate external devices. Some multifunctional keyboards are also used to directly and intuitively control video walls.
Common environments for multifunctional keyboards are complex, high-performance workplaces for financial traders and control room operators (emergency services, security, air traffic management; industry, utilities management, etc.).
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Pages: 1