You are not logged in.

- Topics: Active | Unanswered

Pages: **1**

**jacks****Member**- Registered: 2012-11-21
- Posts: 84

{A} Total no. of positive integer ordered pairs of

which satisfy{B} Total no. of positive integer ordered pairs of

which satisfyOffline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 103,681

Hi;

There are 6 ways for 120 and 2 ways for 2013.

**In mathematics, you don't understand things. You just get used to them.****If it ain't broke, fix it until it is.** **A number by itself is useful, but it is far more useful to know how accurate or certain that number is.**

Offline

**jacks****Member**- Registered: 2012-11-21
- Posts: 84

Thanks Bobbym would you like to explain it to me, Thanks

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 103,681

Hi;

As far as I know there is no known formula for these problems. The latest work only provides a bound, not an exact answer. These had to be computed for both numbers.

**In mathematics, you don't understand things. You just get used to them.****If it ain't broke, fix it until it is.** **A number by itself is useful, but it is far more useful to know how accurate or certain that number is.**

Offline

**jacks****Member**- Registered: 2012-11-21
- Posts: 84

Yes Bobbym I need upper bond.

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 103,681

Hi;

Unless I am misunderstanding their paper they have only established an upper bound for

n >= 2r

this is almost useless for your question.

**In mathematics, you don't understand things. You just get used to them.****If it ain't broke, fix it until it is.**

Offline

Pages: **1**