Math Is Fun Forum
  Discussion about math, puzzles, games and fun.   Useful symbols: √ ∞ ≠ ≤ ≥ ≈ ⇒ ∈ Δ θ ∴ ∑ ∫ π -




Not registered yet?

#1 2011-04-22 23:18:26



Geogebra and jumping frogs.


Posted elsewhere is the problem of the jumping frog. Geogebra makes the problem easy and shows that it is more geometric than anything else.

A bullfrog leaps 2 meters in some direction. Does not like its location so it randomly leaps n meters again in some direction. If its odds of being within 1 meter from its original position are 1 / 6 then what is n?

Basically what you do is draw a unit circle around the origin. The origin represents the starting point of the frog. Draw another concentric circle with radius 2 (shaded circle). This represents all possible first jumps. WLOG pick a point on the shaded circle and call it B. Draw two tangents from B to the smaller circle. Call the tangent points F and G. Now it is just a geometry proof. Angle FBG is 60 degrees. The red circle represents all possible 2nd jumps. This angle of 60 degrees represents 1 / 6 of all possible second jumps.

Line segments AB and BC are

long. That is the length of n.

Uploaded Images
View Image: hello.gif      

In mathematics, you don't understand things. You just get used to them.
I have the result, but I do not yet know how to get it.
All physicists, and a good many quite respectable mathematicians are contemptuous about proof.

Board footer

Powered by FluxBB