Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 Science HQ » Radon » Yesterday 20:10:06

Jai Ganesh
Replies: 0

Radon

Gist

Radon is a naturally occurring radioactive gas, colorless and odorless, produced from the decay of uranium in rocks and soil. It can seep into buildings through cracks and openings, potentially leading to elevated indoor concentrations. While radon quickly dilutes outdoors, high indoor levels can pose a health risk, particularly lung cancer.

Radon is primarily used in scientific research and, historically, in some medical treatments. In scientific research, it's used as a tracer to monitor air masses and study atmospheric transport. It also plays a role in geological investigations and can be used as an indicator in earthquake forecasting. In the past, radon was used in some cancer treatments, but safer alternatives are now more common.

Summary

Radon is a naturally occurring radioactive gas that is colorless and odorless. Radon comes from the natural decay of uranium or thorium, elements found in rocks, soils, and water. Radon breaks down quickly, giving off radioactive particles. When inhaled, these radioactive particles can damage cells that line the lung.

Radon is a naturally occurring radioactive gas that is colorless and odorless. Radon comes from the natural decay of uranium or thorium, elements found in rocks, soils, and water. Radon breaks down quickly, giving off radioactive particles. When inhaled, these radioactive particles can damage cells that line the lung.

Radon gas is in nearly all outdoor air but usually at low levels. Radon is also found in water. A higher radon level in the water supply is more likely when the source is ground water, such as from a private well. Most public water supplies are sourced from surface water, such as lakes, rivers, and reservoirs.

Does radon affect health?

Scientists agree that radon causes lung cancer in humans. Being exposed to radon for a long period of time can lead to lung cancer. In the U.S., radon exposure is the second leading cause of lung cancer after cigarette smoking.

Exposure to the combination of radon gas and cigarette smoke creates an even greater chance of developing lung cancer. The majority of radon-related cancer deaths occur among smokers. However, it is estimated that about 10% of radon-related cancer deaths occur among nonsmokers.

Details

Radon is a chemical element; it has symbol Rn and atomic number 86. It is a radioactive noble gas and is colorless and odorless. Of the three naturally occurring radon isotopes, only 222Rn has a sufficiently long half-life (3.825 days) for it to be released from the soil and rock where it is generated. Radon isotopes are the immediate decay products of radium isotopes. The instability of 222Rn, its most stable isotope, makes radon one of the rarest elements. Radon will be present on Earth for several billion more years despite its short half-life, because it is constantly being produced as a step in the decay chains of 238U and 232Th, both of which are abundant radioactive nuclides with half-lives of at least several billion years. The decay of radon produces many other short-lived nuclides, known as "radon daughters", ending at stable isotopes of lead. 222Rn occurs in significant quantities as a step in the normal radioactive decay chain of 238U, also known as the uranium series, which slowly decays into a variety of radioactive nuclides and eventually decays into stable 206Pb. 220Rn occurs in minute quantities as an intermediate step in the decay chain of 232Th, also known as the thorium series, which eventually decays into stable 208Pb.

Radon was discovered in 1899 by Ernest Rutherford and Robert B. Owens at McGill University in Montreal, and was the fifth radioactive element to be discovered. First known as "emanation", the radioactive gas was identified during experiments with radium, thorium oxide, and actinium by Friedrich Ernst Dorn, Rutherford and Owens, and André-Louis Debierne, respectively, and each element's emanation was considered to be a separate substance: radon, thoron, and actinon. Sir William Ramsay and Robert Whytlaw-Gray considered that the radioactive emanations may contain a new element of the noble gas family, and isolated "radium emanation" in 1909 to determine its properties. In 1911, the element Ramsay and Whytlaw-Gray isolated was accepted by the International Commission for Atomic Weights, and in 1923, the International Committee for Chemical Elements and the International Union of Pure and Applied Chemistry (IUPAC) chose radon as the accepted name for the element's most stable isotope, 222Rn; thoron and actinon were also recognized by IUPAC as distinct isotopes of the element.

Under standard conditions, radon is gaseous and can be easily inhaled, posing a health hazard. However, the primary danger comes not from radon itself, but from its decay products, known as radon daughters. These decay products, often existing as single atoms or ions, can attach themselves to airborne dust particles. Although radon is a noble gas and does not adhere to lung tissue (meaning it is often exhaled before decaying), the radon daughters attached to dust are more likely to stick to the lungs. This increases the risk of harm, as the radon daughters can cause damage to lung tissue. Radon and its daughters are, taken together, often the single largest contributor to an individual's background radiation dose, but due to local differences in geology, the level of exposure to radon gas differs by location. A common source of environmental radon is uranium-containing minerals in the ground; it therefore accumulates in subterranean areas such as basements. Radon can also occur in ground water, such as spring waters and hot springs. Radon trapped in permafrost may be released by climate-change-induced thawing of permafrosts, and radon may also be released into groundwater and the atmosphere following seismic events leading to earthquakes, which has led to its investigation in the field of earthquake prediction. It is possible to test for radon in buildings, and to use techniques such as sub-slab depressurization for mitigation.

Epidemiological studies have shown a clear association between breathing high concentrations of radon and incidence of lung cancer. Radon is a contaminant that affects indoor air quality worldwide. According to the United States Environmental Protection Agency (EPA), radon is the second most frequent cause of lung cancer, after cigarette smoking, causing 21,000 lung cancer deaths per year in the United States. About 2,900 of these deaths occur among people who have never smoked. While radon is the second most frequent cause of lung cancer, it is the number one cause among non-smokers, according to EPA policy-oriented estimates. Significant uncertainties exist for the health effects of low-dose exposures.

Additional Information

Radon (Rn) is a chemical element, a heavy radioactive gas of Group 18 (noble gases) of the periodic table, generated by the radioactive decay of radium. (Radon was originally called radium emanation.) Radon is a colourless gas, 7.5 times heavier than air and more than 100 times heavier than hydrogen. The gas liquefies at −61.8 °C (−79.2 °F) and freezes at −71 °C (−96 °F). On further cooling, solid radon glows with a soft yellow light that becomes orange-red at the temperature of liquid air (−195 °C [−319 °F]).

Radon is rare in nature because its isotopes are all short-lived and because its source, radium, is a scarce element. The atmosphere contains traces of radon near the ground as a result of seepage from soil and rocks, both of which contain minute quantities of radium. (Radium occurs as a natural decay product of uranium present in various types of rocks.)

By the late 1980s, naturally occurring radon gas had come to be recognized as a potentially serious health hazard. Radioactive decay of uranium in minerals, especially granite, generates radon gas that can diffuse through soil and rock and enter buildings through basements (radon has a higher density than air) and through water supplies derived from wells (radon has a significant solubility in water). The gas can accumulate in the air of poorly ventilated houses. The decay of radon produces radioactive “daughters” (polonium, bismuth, and lead isotopes) that can be ingested from well water or can be absorbed in dust particles and then breathed into the lungs. Exposure to high concentrations of this radon and its daughters over the course of many years can greatly increase the risk of developing lung cancer. Indeed, radon is now thought to be the greatest cause of lung cancer among nonsmokers in the United States. Radon levels are highest in homes built over geological formations that contain uranium mineral deposits.

Concentrated samples of radon are prepared synthetically for medical and research purposes. Typically, a supply of radium is kept in a glass vessel in an aqueous solution or in the form of a porous solid from which the radon can readily flow. Every few days, the accumulated radon is pumped off, purified, and compressed into a small tube, which is then sealed and removed. The tube of gas is a source of penetrating gamma rays, which come mainly from one of radon’s decay products, bismuth-214. Such tubes of radon have been used for radiation therapy and radiography.

Natural radon consists of three isotopes, one from each of the three natural radioactive-disintegration series (the uranium, thorium, and actinium series). Discovered in 1900 by German chemist Friedrich E. Dorn, radon-222 (3.823-day half-life), the longest-lived isotope, arises in the uranium series. The name radon is sometimes reserved for this isotope to distinguish it from the other two natural isotopes, called thoron and actinon, because they originate in the thorium and the actinium series, respectively.

Radon-220 (thoron; 51.5-second half-life) was first observed in 1899 by American scientist Robert B. Owens and British scientist Ernest Rutherford, who noticed that some of the radioactivity of thorium compounds could be blown away by breezes in the laboratory. Radon-219 (actinon; 3.92-second half-life), which is associated with actinium, was found independently in 1904 by German chemist Friedrich O. Giesel and French physicist André-Louis Debierne. Radioactive isotopes having masses ranging from 204 through 224 have been identified, the longest-lived of these being radon-222, which has a half-life of 3.82 days. All the isotopes decay into stable end-products of helium and isotopes of heavy metals, usually lead.

Radon atoms possess a particularly stable electronic configuration of eight electrons in the outer shell, which accounts for the characteristic chemical inactivity of the element. Radon, however, is not chemically inert. For example, the existence of the compound radon difluoride, which is apparently more stable chemically than compounds of the other reactive noble gases, krypton and xenon, was established in 1962. Radon’s short lifetime and its high-energy radioactivity cause difficulties for the experimental investigation of radon compounds.

When a mixture of trace amounts of radon-222 and fluorine gas is heated to approximately 400 °C (752 °F), a nonvolatile radon fluoride is formed. The intense α-radiation of millicurie and curie amounts of radon provides sufficient energy to allow radon in such quantities to react spontaneously with gaseous fluorine at room temperature and with liquid fluorine at −196 °C (−321 °F).

Element Properties

atomic number  :  86
stablest isotope  :  (222)
melting point  :  −71 °C (−96 °F)
boiling point  :  −62 °C (−80 °F)
density (1 atm, 0 °C [32 °F])  :  9.73 g/litre (0.13 ounce/gallon)
oxidation states    :  0, +2.

xiBUdgXVtHoeJQXPtZBbBS-750-80.jpg.webp

#2 Re: Jai Ganesh's Puzzles » General Quiz » Yesterday 19:25:05

Hi,

#10415. What does the term in Chemistry Chemical reaction mean?

#10416. What does the term in Chemistry Chemical compound mean?

#3 Re: Jai Ganesh's Puzzles » English language puzzles » Yesterday 19:06:03

Hi,

#5603. What does the noun pursuit mean?

#5604. What does the verb (used with object) purvey mean?

#4 Re: Jai Ganesh's Puzzles » Doc, Doc! » Yesterday 18:31:49

Hi,

#2392. What does the medical term Lymph node mean?

#8 Science HQ » Xenon » 2025-06-13 18:59:40

Jai Ganesh
Replies: 0

Xenon

Gist

Xenon (Xe) is a chemical element, a colorless, odorless, and rare noble gas with the atomic number 54. It's known for its inertness and unique properties, including its ability to form compounds under specific conditions. Xenon is found in trace amounts in Earth's atmosphere and is also present in gases emitted from some mineral springs.

Summary

Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the formation of xenon hexafluoroplatinate, the first noble gas compound to be synthesized.

Xenon is used in flash lamps and arc lamps, and as a general anesthetic. The first excimer laser design used a xenon dimer molecule (Xe2) as the lasing medium, and the earliest laser designs used xenon flash lamps as pumps. Xenon is also used to search for hypothetical weakly interacting massive particles and as a propellant for ion thrusters in spacecraft.

Naturally occurring xenon consists of seven stable isotopes and two long-lived radioactive isotopes. More than 40 unstable xenon isotopes undergo radioactive decay, and the isotope ratios of xenon are an important tool for studying the early history of the Solar System. Radioactive xenon-135 is produced by beta decay from iodine-135 (a product of nuclear fission), and is the most significant (and unwanted) neutron absorber in nuclear reactors.

Details

Xenon (Xe), chemical element, a heavy and extremely rare gas of Group 18 (noble gases) of the periodic table. It was the first noble gas found to form true chemical compounds. More than 4.5 times heavier than air, xenon is colorless, odorless, and tasteless. Solid xenon belongs to the face-centered cubic crystal system, which implies that its molecules, which consist of single atoms, behave as spheres packed together as closely as possible. The name xenon is derived from the Greek word xenos, “strange” or “foreign.”

Element Properties:

atomic number  :  54
atomic weight  :  131.29
melting point  :  −111.9 °C (−169.4 °F)
boiling point  :  −108.0 °C (−162.4 °F)
density (1 atm, 0 °C [32 °F])  :  5.887 g/liter (0.078 ounce/gallon)
oxidation states    0, +2, +4, +6, +8

Properties of the element

Xenon occurs in slight traces in gases within Earth and is present to an extent of about 0.0000086 percent, or about 1 part in 10 million by volume of dry air. Like several other noble gases, xenon is present in meteorites. Xenon is manufactured on a small scale by the fractional distillation of liquid air. It is the least volatile (boiling point, −108.0 °C [−162.4 °F]) of the noble gases obtainable from the air. The British chemists Sir William Ramsay and Morris W. Travers isolated the element in 1898 by repeated fractional distillation of the noble gas krypton, which they had discovered six weeks previously.

The element xenon is used in lamps that produce extremely short and intense flashes of light, such as stroboscopes and lights for high-speed photography. When a charge of electricity is passed through the gas at low pressure, it emits a flash of bluish-white light; at higher pressures, white light resembling daylight is emitted. Xenon flashlamps are used to activate ruby lasers.

Natural xenon is a mixture of nine stable isotopes in the following percentages: xenon-124 (0.096), xenon-126 (0.090), xenon-128 (1.92), xenon-129 (26.44), xenon-130 (4.08), xenon-131 (21.18), xenon-132 (26.89), xenon-134 (10.44), and xenon-136 (8.87). The mass numbers of the known isotopes of xenon range from 118 to 144. The xenon found in some stony meteorites shows a large proportion of xenon-129, believed to be a product of radioactive decay of iodine-129, whose half-life is 17,000,000 years. Measuring the xenon-129 content of meteorites casts light on the history of the solar system. More than a dozen radioactive xenon isotopes produced by fission of uranium and other nuclear reactions are known. For example, xenon-135 (9.2-hour half-life) is produced by uranium fission in nuclear reactors, where it is troublesome because it absorbs fission-producing neutrons. Xenon-129 is of particular importance because this isotope can be observed by nuclear magnetic resonance spectroscopy, which makes it useful for the structural characterization of xenon compounds. The xenon isotopes produced in the greatest amount by nuclear fission are xenon-131, -132, -134, and -136, which are stable, and xenon-133, which is radioactive, with a half-life of 5.27 days.

dEuKm6bu8wMhWh4E4i6BAd-1200-80.jpg

#9 Re: Jai Ganesh's Puzzles » General Quiz » 2025-06-13 18:19:49

Hi,

#10413. What does the term in Physics Short circuit mean?

#10414. What does the tert in Physics Specific heat capacity mean?

#10 Re: Jai Ganesh's Puzzles » English language puzzles » 2025-06-13 18:03:19

Hi,

#5601. What does the noun plethora mean?

#5602. What does the adjective pliable mean?

#11 Re: Jai Ganesh's Puzzles » Doc, Doc! » 2025-06-13 17:47:30

Hi,

#2392. What does the medical term wound mean?

#15 Science HQ » Krypton » 2025-06-12 17:40:16

Jai Ganesh
Replies: 0

Krypton

Gist

Krypton (Kr) is a colorless, odorless, noble gas with atomic number 36. It's a trace element in the atmosphere and is known for its inertness and various applications, including lighting, photography, and lasers.

It does not react with anything except fluorine gas. Krypton is used commercially as a filling gas for energy-saving fluorescent lights. It is also used in some flash lamps used for high-speed photography. Unlike the lighter gases in its group, it is reactive enough to form some chemical compounds.

Summary

Krypton is a chemical element; it has symbol Kr and atomic number 36. It is a colorless, odorless noble gas that occurs in trace amounts in the atmosphere and is often used with other rare gases in fluorescent lamps. Krypton is chemically inert.

Krypton, like the other noble gases, is used in lighting and photography. Krypton light has many spectral lines, and krypton plasma is useful in bright, high-powered gas lasers (krypton ion and excimer lasers), each of which resonates and amplifies a single spectral line. Krypton fluoride also makes a useful laser medium. From 1960 to 1983, the official definition of the metre was based on the wavelength of one spectral line of krypton-86, because of the high power and relative ease of operation of krypton discharge tubes.

Details

Krypton (Kr), chemical element, a rare gas of Group 18 (noble gases) of the periodic table, which forms relatively few chemical compounds. About three times heavier than air, krypton is colorless, odorless, tasteless, and monatomic. Although traces are present in meteorites and minerals, krypton is more plentiful in Earth’s atmosphere, which contains 1.14 parts per million by volume of krypton. The element was discovered in 1898 by the British chemists Sir William Ramsay and Morris W. Travers in the residue left after a sample of liquid air had boiled almost entirely away.

Element Properties

atomic number  :  36
atomic weight  :  83.798
melting point  :  −157.4 °C (−251.3 °F)
boiling point  :  −153.4 °C (−244.1 °F)
density (1 atm, 0 °C [32 °F])  :  3.733 g/litre (0.049 ounce/gallon)
oxidation numbers  :  0, 2

Properties of the element

Because its boiling point (−153.4 °C, or −244.1 °F) is about 30–40 °C (50–70 °F) higher than those of the major constituents of air, krypton is readily separated from liquid air by fractional distillation; it accumulates along with xenon in the least volatile portion. These two gases are further purified by adsorption onto silica gel, redistillation, and passage over hot titanium metal, which removes all impurities except other noble gases.

Krypton is used in certain electric and fluorescent lamps and in a flashlamp employed in high-speed photography. Radioactive krypton-85 is useful for detecting leaks in sealed containers, with the escaping atoms detected by means of their radiation. Krypton is named from the Greek word kryptos, “hidden.”

When a current of electricity is passed through a glass tube containing krypton at low pressure, a bluish white light is emitted. The wavelength of an orange-red component of light emitted by stable krypton-86, because of its extreme sharpness, served from 1960 to 1983 as the international standard for the meter. (One meter equaled 1,650,763.73 times the wavelength of this line.)

Natural krypton is a mixture of six stable isotopes: krypton-84 (56.99 percent), krypton-86 (17.28 percent), krypton-82 (11.59 percent), krypton-83 (11.5 percent), krypton-80 (2.29 percent), and krypton-78 (0.36 percent). Krypton has isotopes of every mass number from 69 through 101; of these isotopes,25 are radioactive and are produced by fission of uranium and by other nuclear reactions. The longest-lived of these, krypton-81, has a half-life of 229,000 years. After it has been stored a few days, krypton obtained by nuclear fission contains only one radioactive isotope, krypton-85, which has a half-life of 10.7 years, because all the other radioactive isotopes have half-lives of 3 hours or less.

Additional Information

Krypton is an inert (or “noble”) gas and, as such, is not bound up in molecules but exists as single atoms.1 It is the fourth atom in group 18 of the periodic table of elements, after helium, neon, and argon. Its concentration in Earth’s atmosphere is ≈1 ppm by volume.

In 1898, British chemists William Ramsay and Morris Travers discovered krypton as the residue of evaporating almost all of the other components of liquid air. For his work in the discovery of several inert gases, Ramsay was awarded the Nobel Prize in Chemistry in 1904.

Like all inert gases, the boiling and melting points of krypton are only a few degrees apart (see “fast facts”). Krypton has few practical applications, mostly in bright white light bulbs used in photography and in devices used in physical and chemical research. At one time, the wavelength of light emitted by the 86Kr isotope was used to define the meter, but in 1983, the meter’s definition was changed to a function of the speed of light.

In comic books dating back to 1949, “Krypton” was the planet where Superman was born; and “kryptonite” was the only substance that the superhero was vulnerable to. Over the years, the mythological kryptonite was endowed with much more extensive chemistry than real krypton gas.

krypton-special.png

#16 Re: Jai Ganesh's Puzzles » General Quiz » 2025-06-12 17:03:27

Hi,

#10411. What does the term in Physics Escape velocity mean?

#10412. What does the term in Physics Electric generator mean?

#17 Re: Jai Ganesh's Puzzles » English language puzzles » 2025-06-12 16:47:26

Hi,

#5599. What does the noun obverse mean?

#5600. What does the verb (used with object) obviate mean?

#18 Re: Jai Ganesh's Puzzles » Doc, Doc! » 2025-06-12 16:30:31

Hi,

#2391. What does the medical term Prickly heat mean?

#22 Science HQ » Argon » 2025-06-11 18:37:43

Jai Ganesh
Replies: 0

Argon

Gist

Argon (Ar) is a noble gas, an element found in group 18 (VIIIa) of the periodic table. It's a colorless, odorless, and tasteless gas that's chemically inert. Argon is the third most abundant gas in Earth's atmosphere, making up about 1% of it.

Summary

Argon (Ar), chemical element, inert gas of Group 18 (noble gases) of the periodic table, terrestrially the most abundant and industrially the most frequently used of the noble gases. Colourless, odourless, and tasteless, argon gas was isolated (1894) from air by the British scientists Lord Rayleigh and Sir William Ramsay. Henry Cavendish, while investigating atmospheric nitrogen (“phlogisticated air”), had concluded in 1785 that not more than 1/120 part of the nitrogen might be some inert constituent. His work was forgotten until Lord Rayleigh, more than a century later, found that nitrogen prepared by removing oxygen from air is always about 0.5 percent more dense than nitrogen derived from chemical sources such as ammonia. The heavier gas remaining after both oxygen and nitrogen had been removed from air was the first of the noble gases to be discovered on Earth and was named after the Greek word argos, “lazy,” because of its chemical inertness. (Helium had been spectroscopically detected in the Sun in 1868.)

In cosmic abundance, argon ranks approximately 12th among the chemical elements. Argon constitutes 1.288 percent of the atmosphere by weight and 0.934 percent by volume and is found occluded in rocks. Although the stable isotopes argon-36 and argon-38 make up all but a trace of this element in the universe, the third stable isotope, argon-40, makes up 99.60 percent of the argon found on Earth. (Argon-36 and argon-38 make up 0.34 and 0.06 percent of Earth’s argon, respectively.) A major portion of terrestrial argon has been produced, since the Earth’s formation, in potassium-containing minerals by decay of the rare, naturally radioactive isotope potassium-40. The gas slowly leaks into the atmosphere from the rocks in which it is still being formed. The production of argon-40 from potassium-40 decay is utilized as a means of determining Earth’s age (potassium-argon dating).

Argon is isolated on a large scale by the fractional distillation of liquid air. It is used in gas-filled electric light bulbs, radio tubes, and Geiger counters. It also is widely utilized as an inert atmosphere for arc-welding metals, such as aluminum and stainless steel; for the production and fabrication of metals, such as titanium, zirconium, and uranium; and for growing crystals of semiconductors, such as silicon and germanium.

Argon gas condenses to a colourless liquid at −185.8 °C (−302.4 °F) and to a crystalline solid at −189.4 °C (−308.9 °F). The gas cannot be liquefied by pressure above a temperature of −122.3 °C (−188.1 °F), and at this point a pressure of at least 48 atmospheres is required to make it liquefy. At 12 °C (53.6 °F), 3.94 volumes of argon gas dissolve in 100 volumes of water. An electric discharge through argon at low pressure appears pale red and at high pressure, steely blue.

The outermost (valence) shell of argon has eight electrons, making it exceedingly stable and, thus, chemically inert. Argon atoms do not combine with one another; nor have they been observed to combine chemically with atoms of any other element. Argon atoms have been trapped mechanically in cagelike cavities among molecules of other substances, as in crystals of ice or the organic compound hydroquinone (called argon clathrates).

Element Properties

atomic number  :  18
atomic weight  :  [39.792, 39.963]
melting point  :  −189.2 °C (−308.6 °F)
boiling point  :  −185.7 °C (−302.3 °F)
density (1 atm, 0° C)  :  1.784 g/litre
oxidation state  :  0.

Details

Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abundant as water vapor (which averages about 4000 ppmv, but varies greatly), 23 times as abundant as carbon dioxide (400 ppmv), and more than 500 times as abundant as neon (18 ppmv). Argon is the most abundant noble gas in Earth's crust, comprising 0.00015% of the crust.

Nearly all argon in Earth's atmosphere is radiogenic argon-40, derived from the decay of potassium-40 in Earth's crust. In the universe, argon-36 is by far the most common argon isotope, as it is the most easily produced by stellar nucleosynthesis in supernovas.

The complete octet (eight electrons) in the outer atomic shell makes argon stable and resistant to bonding with other elements. Its triple point temperature of 83.8058 K is a defining fixed point in the International Temperature Scale of 1990.

Argon is extracted industrially by the fractional distillation of liquid air. It is mostly used as an inert shielding gas in welding and other high-temperature industrial processes where ordinarily unreactive substances become reactive; for example, an argon atmosphere is used in graphite electric furnaces to prevent the graphite from burning. It is also used in incandescent and fluorescent lighting, and other gas-discharge tubes. It makes a distinctive blue-green gas laser. It is also used in fluorescent glow starters.

Characteristics

Argon has approximately the same solubility in water as oxygen and is 2.5 times more soluble in water than nitrogen. Argon is colorless, odorless, nonflammable and nontoxic as a solid, liquid or gas. Argon is chemically inert under most conditions and forms no confirmed stable compounds at room temperature.

Although argon is a noble gas, it can form some compounds under various extreme conditions. Argon fluorohydride (HArF), a compound of argon with fluorine and hydrogen that is stable below 17 K (−256.1 °C; −429.1 °F), has been demonstrated. Although the neutral ground-state chemical compounds of argon are presently limited to HArF, argon can form clathrates with water when atoms of argon are trapped in a lattice of water molecules. Ions, such as ArH+ , and excited-state complexes, such as ArF, have been demonstrated. Theoretical calculation predicts several more argon compounds that should be stable but have not yet been synthesized.

Occurrence

Argon constitutes 0.934% by volume and 1.288% by mass of Earth's atmosphere. Air is the primary industrial source of purified argon products. Argon is isolated from air by fractionation, most commonly by cryogenic fractional distillation, a process that also produces purified nitrogen, oxygen, neon, krypton and xenon. Earth's crust and seawater contain 1.2 ppm and 0.45 ppm of argon, respectively.

Argon_Tile.png

#23 Re: Jai Ganesh's Puzzles » General Quiz » 2025-06-11 18:07:13

Hi,

#10409. What does the term in Physics Density mean?

#10410. What does the term in Physics Diode mean?

#24 Re: Jai Ganesh's Puzzles » English language puzzles » 2025-06-11 17:35:46

Hi,

#5597. What does the verb (used with object) optimize mean?

#5598. What does the adjective opulent mean?

#25 Re: Jai Ganesh's Puzzles » Doc, Doc! » 2025-06-11 17:21:15

Hi,

#2390. What does the medical term Dental abrasion mean?

Board footer

Powered by FluxBB