Discussion about math, puzzles, games and fun. Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ π -¹ ² ³ °

You are not logged in.

- Topics: Active | Unanswered

**ganesh****Moderator**- Registered: 2005-06-28
- Posts: 21,307

The factorial notation must be familiar to most of you.

n! (read as n factorial) is defined as

n!=n(n-1)(n-2)(n-3)...........4 x 3 x 2 x 1.

Thus, 2!=2 x 1 = 2

3! = 3 x 2 x 1 = 6,

4! = 4 x 3 x 2 x 1 = 24

5! = 5 x 4 x 3 x 2 x 1 = 120

6! = 6 x 5 x 4 x 3 x 2 x 1 = 720 and so on.

Facotrials are useful in Combinatorics (Permutations, Combinations etc.), Probability theory, Binomial theorem, Calculus etc.

Hyperfactorial is defined as

Thus,

H(1) = 1,

H(2) = 4,

H(3) = 108 and so on.

Finally, the Superfactorial.

Clifford Pickover in his 1995 book Keys to Infinity defined the superfactorial of n as

When expressed in Knuth's up-arrow notation.

n$=n!^^n!

For example,

The function grows very rapidly and as n increases, the tower of powers increases at a very quick rate.

100$ would have more powers in the tower than a Googol! And

1000$ would have more powers in the tower than

These are extremely large numbers, and absolutely useless to a common man!

That is because a person may never encounter a number greater than

for most of his/her life, and certainly never ever think of anything near

unless he's/she's a mathematician!

It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

**Patrick****Real Member**- Registered: 2006-02-24
- Posts: 1,005

Is the hyperfactorial meant to be:

Support MathsIsFun.com by clicking on the banners.

What music do I listen to? Clicky click

Offline

**ganesh****Moderator**- Registered: 2005-06-28
- Posts: 21,307

Yes, you are correct, Patrick!

That is what it is.

I had even given examples of H(1)=1,

H(2)=4, H(3)=1.2².3³=1 x 4 x 27=108.

It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

**Toast****Real Member**- Registered: 2006-10-08
- Posts: 1,321

In Knuth's upper arrow notation, how many powers do you raise n to?

Offline

**Patrick****Real Member**- Registered: 2006-02-24
- Posts: 1,005

ganesh wrote:

Yes, you are correct, Patrick!

That is what it is.

I had even given examples of H(1)=1,

H(2)=4, H(3)=1.2².3³=1 x 4 x 27=108.

Oh well, I guess I'm turning blind.. Thanks for sharing the knowledge though Had never heard of hyperfactorials before!

Support MathsIsFun.com by clicking on the banners.

What music do I listen to? Clicky click

Offline

**Zhylliolom****Real Member**- Registered: 2005-09-05
- Posts: 412

Toast wrote:

In Knuth's upper arrow notation, how many powers do you raise n to?

means raise a to itself n-1 times. For example,

Then basically there is a "tower" of n a's.

I can post more on this notation once I figure out how to make the LaTeX work here. (does someone know how to do underbraces in this forum? I can't see you get it to work)

Offline

**Patrick****Real Member**- Registered: 2006-02-24
- Posts: 1,005

Zhylliolom wrote:

Toast wrote:In Knuth's upper arrow notation, how many powers do you raise n to?

means raise a to itself n-1 times. For example,

Then basically there is a "tower" of n a's.

I can post more on this notation once I figure out how to make the LaTeX work here. (does someone know how to do underbraces in this forum? I can't see you get it to work)

*Last edited by Patrick (2007-02-21 09:15:31)*

Support MathsIsFun.com by clicking on the banners.

What music do I listen to? Clicky click

Offline

**ganesh****Moderator**- Registered: 2005-06-28
- Posts: 21,307

Toast,

This page gives details of Knuth's up-arrow notation. The operation becomes much more complicated when the number of up-arrows is more.

It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline