You are not logged in.
Pages: 1
Thermal Power
Gist
Thermal power is electricity generated by converting heat energy into mechanical and then electrical energy, typically by burning a fuel to boil water into steam. The steam spins a turbine, which is connected to a generator that produces electricity. Sources for this heat can include coal, natural gas, oil, and geothermal or biomass energy.
Thermal power is electricity generated by converting heat energy into mechanical energy, which then drives a generator. The process typically involves heating a fluid like water to create steam, which spins a turbine. This steam is then condensed back into water and reused.
Summary
Thermal power refers to the energy that is generated by converting heat into electricity. It is the process of producing electricity from a primary source of heat by using a steam turbine, which drives an electrical generator.
The primary source of heat can be obtained from various sources, including burning fossil fuels such as coal, oil, and natural gas, or through nuclear fission.
The heat energy is used to produce steam, which is then directed towards the turbine.
The steam expands as it passes through the turbine blades, causing them to spin and generating electricity.
The electricity is then transmitted to the power grid for distribution to homes and businesses.
Thermal power is a widely used method of generating electricity due to the abundance and accessibility of fossil fuels.
However, it is also a significant contributor to greenhouse gas emissions and environmental pollution.
Efforts are being made to reduce the environmental impact of thermal power by developing more efficient and cleaner energy technologies such as solar, wind, and geothermal power.
Details
A thermal power station, also known as a thermal power plant, is a type of power station in which the heat energy generated from various fuel sources (e.g., coal, natural gas, nuclear fuel, etc.) is converted to electrical energy. The heat from the source is converted into mechanical energy using a thermodynamic power cycle (such as a Diesel cycle, Rankine cycle, Brayton cycle, etc.). The most common cycle involves a working fluid (often water) heated and boiled under high pressure in a pressure vessel to produce high-pressure steam. This high pressure-steam is then directed to a turbine, where it rotates the turbine's blades. The rotating turbine is mechanically connected to an electric generator which converts rotary motion into electricity. Fuels such as natural gas or oil can also be burnt directly in gas turbines (internal combustion), skipping the steam generation step. These plants can be of the open cycle or the more efficient combined cycle type.
The majority of the world's thermal power stations are driven by steam turbines, gas turbines, or a combination of the two. The efficiency of a thermal power station is determined by how effectively it converts heat energy into electrical energy, specifically the ratio of saleable electricity to the heating value of the fuel used. Different thermodynamic cycles have varying efficiencies, with the Rankine cycle generally being more efficient than the Otto or Diesel cycles. In the Rankine cycle, the low-pressure exhaust from the turbine enters a steam condenser where it is cooled to produce hot condensate which is recycled to the heating process to generate even more high pressure steam.
The design of thermal power stations depends on the intended energy source. In addition to fossil and nuclear fuel, some stations use geothermal power, solar energy, biofuels, and waste incineration. Certain thermal power stations are also designed to produce heat for industrial purposes, provide district heating, or desalinate water, in addition to generating electrical power. Emerging technologies such as supercritical and ultra-supercritical thermal power stations operate at higher temperatures and pressures for increased efficiency and reduced emissions. Cogeneration or CHP (Combined Heat and Power) technology, the simultaneous production of electricity and useful heat from the same fuel source, improves the overall efficiency by using waste heat for heating purposes. Older, less efficient thermal power stations are being decommissioned or adapted to use cleaner and renewable energy sources.
Thermal power stations produce 70% of the world's electricity. They often provide reliable, stable, and continuous baseload power supply essential for economic growth. They ensure energy security by maintaining grid stability, especially in regions where they complement intermittent renewable energy sources dependent on weather conditions. The operation of thermal power stations contributes to the local economy by creating jobs in construction, maintenance, and fuel extraction industries. On the other hand, burning of fossil fuels releases greenhouse gases (contributing to climate change) and air pollutants such as sulfur oxides and nitrogen oxides (leading to acid rain and respiratory diseases). Carbon capture and storage (CCS) technology can reduce the greenhouse gas emissions of fossil-fuel-based thermal power stations, however it is expensive and has seldom been implemented. Government regulations and international agreements are being enforced to reduce harmful emissions and promote cleaner power generation.
Types of thermal energy
Almost all coal-fired power stations, petroleum, nuclear, geothermal, solar thermal electric, and waste incineration plants, as well as all natural gas power stations are thermal. Natural gas is frequently burned in gas turbines as well as boilers. The waste heat from a gas turbine, in the form of hot exhaust gas, can be used to raise steam by passing this gas through a heat recovery steam generator (HRSG). The steam is then used to drive a steam turbine in a combined cycle plant that improves overall efficiency. Power stations burning coal, fuel oil, or natural gas are often called fossil fuel power stations. Some biomass-fueled thermal power stations have appeared also. Non-nuclear thermal power stations, particularly fossil-fueled plants, which do not use cogeneration are sometimes referred to as conventional power stations.
Commercial electric utility power stations are usually constructed on a large scale and designed for continuous operation. Virtually all electric power stations use three-phase electrical generators to produce alternating current (AC) electric power at a frequency of 50 Hz or 60 Hz. Large companies or institutions may have their own power stations to supply heating or electricity to their facilities, especially if steam is created anyway for other purposes. Steam-driven power stations have been used to drive most ships in most of the 20th century. Shipboard power stations usually directly couple the turbine to the ship's propellers through gearboxes. Power stations in such ships also provide steam to smaller turbines driving electric generators to supply electricity. Nuclear marine propulsion is, with few exceptions, used only in naval vessels. There have been many turbo-electric ships in which a steam-driven turbine drives an electric generator which powers an electric motor for propulsion.
Cogeneration plants, often called combined heat and power (CHP) facilities, produce both electric power and heat for process heat or space heating, such as steam and hot water.
Additional Information:
What are the key components of a thermal power plant?
The key components of a thermal power plant include:
* Boiler: This is the part of the plant where fuel is burned to produce high-pressure steam.
* Turbine: The steam produced by the boiler is used to power a turbine. The turbine is a machine that converts the kinetic energy of steam into mechanical energy.
* Generator: The mechanical energy produced by the turbine is used to generate electricity. The generator is a machine that converts mechanical energy into electrical energy.
* Condenser: After the steam passes through the turbine, it is cooled and condensed back into water by passing it through a condenser. The condenser transfers the heat from the steam to a cooling medium, typically water or air.
* Cooling tower: The water used in the condenser is typically cooled in a cooling tower before being returned to the condenser.
* Fuel storage and handling system: This is the system that stores and transports the fuel to the boiler. The fuel can be coal, natural gas, or oil.
* Ash handling system: The ash produced during the burning of fuel in the boiler is collected and transported to an ash handling system.
* Control system: The control system monitors and controls the various processes in the power plant, such as the flow of fuel, steam, and water.
Overall, a thermal power plant is a complex system that requires a range of components and processes to work together in a coordinated manner to produce electricity efficiently and reliably.
Who are the largest users of thermal power globally?
The largest users of thermal power globally are countries with large populations and rapidly growing economies, such as China, the United States, India, and Japan.
These countries rely heavily on thermal power to meet their electricity demands due to their large industrial and manufacturing sectors, as well as their growing populations and urbanization.
According to the International Energy Agency (IEA), China is the largest producer of thermal power in the world, followed by the United States and India.
In 2020, thermal power accounted for around 68% of the total electricity generated in China, 63% in the United States, and 73% in India.
However, many countries around the world are increasingly shifting away from thermal power towards cleaner and more sustainable sources of energy, such as renewables, to reduce their greenhouse gas emissions and combat climate change.
Countries such as Germany, the United Kingdom, and Denmark, for example, have set ambitious targets to phase out thermal power and transition to renewable energy sources in the coming years.
![]()
It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.
Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.
Offline
Pages: 1