Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 2025-11-04 22:17:49

Jai Ganesh
Administrator
Registered: 2005-06-28
Posts: 52,374

Boiling Point

Boiling Point

Gist

The boiling point is the temperature at which a liquid turns into a vapor or gas. This occurs when the liquid's vapor pressure equals the surrounding environmental pressure, and the substance's particles gain enough energy to break free from their intermolecular forces. For example, water boils at 100 degrees Centigrade (212 degrees Fahrenheit)  under standard atmospheric pressure.

The boiling point is the specific temperature at which a liquid transitions to gas, occurring when its vapor pressure matches the external atmospheric pressure.

Summary

The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.

The boiling point of a liquid varies depending upon the surrounding environmental pressure. A liquid in a partial vacuum, i.e., under a lower pressure, has a lower boiling point than when that liquid is at atmospheric pressure. Because of this, water boils at 100°C (or with scientific precision: 99.97 °C (211.95 °F)) under standard pressure at sea level, but at 93.4 °C (200.1 °F) at 1,905 metres (6,250 ft) altitude. For a given pressure, different liquids will boil at different temperatures.

The normal boiling point (also called the atmospheric boiling point or the atmospheric pressure boiling point) of a liquid is the special case in which the vapor pressure of the liquid equals the defined atmospheric pressure at sea level, one atmosphere. At that temperature, the vapor pressure of the liquid becomes sufficient to overcome atmospheric pressure and allow bubbles of vapor to form inside the bulk of the liquid. The standard boiling point has been defined by IUPAC since 1982 as the temperature at which boiling occurs under a pressure of one bar.

The heat of vaporization is the energy required to transform a given quantity (a mol, kg, pound, etc.) of a substance from a liquid into a gas at a given pressure (often atmospheric pressure).

Liquids may change to a vapor at temperatures below their boiling points through the process of evaporation. Evaporation is a surface phenomenon in which molecules located near the liquid's edge, not contained by enough liquid pressure on that side, escape into the surroundings as vapor. On the other hand, boiling is a process in which molecules anywhere in the liquid escape, resulting in the formation of vapor bubbles within the liquid. 

Details

At the boiling point, the transition from the liquid to the gaseous phase occurs in a pure substance. Therefore, the boiling point is the temperature at which the vapor pressure of the liquid is equal to the applied pressure on the liquid. The boiling point at a pressure of 1 atmosphere is called the normal boiling point

For a pure substance at a particular pressure P, the stable phase is the vapor phase at temperatures immediately above the boiling point and is the liquid phase at temperatures immediately below the boiling point. The liquid-vapor equilibrium line on the phase diagram of a pure substance gives the boiling point as a function of pressure. Alternatively, this line gives the vapor pressure of the liquid as a function of temperature. The vapor pressure of water is 1 atm (101.325 kilopascals) at 100°C, the normal boiling point of water. The vapor pressure of water is 3.2 kPa (0.031 atm) at 25°C, so the boiling point of water at 3.2 kPa is 25°C. The liquid-vapor equilibrium line on the phase diagram of a pure substance begins at the triple point (where solid, liquid, and vapor coexist in equilibrium) and ends at the critical point, where the densities of the liquid and vapor phases have become equal. For pressures below the triple-point pressure or above the critical-point pressure, the boiling point is meaningless. Carbon dioxide has a triple-point pressure of 5.11 atm (518 kPa), so carbon dioxide has no normal boiling point.

The normal boiling point is high for liquids with strong intermolecular attractions and low for liquids with weak intermolecular attractions. Helium has the lowest normal boiling point, 4.2 kelvin (−268.9°C). Some other normal boiling points are 111.1 K (−162°C) for methane (CH4), 450°C for triacontane (n-C30H62), 1465°C for sodium chloride (NaCl), and 5555°C for tungsten (W).

When a pure liquid is boiled at fixed pressure, the temperature remains constant until all the liquid has vaporized. When a solution is boiled at fixed pressure, the composition of the vapor usually differs from that of the liquid, and the change in liquid composition during boiling changes the boiling point. Thus the boiling process occurs over a range of temperatures for a solution. An exception is an azeotrope, which is a solution that boils entirely at a constant temperature because the vapor in equilibrium with the solution has the same composition as the solution. In fractional distillation, the variation of boiling point with composition is used to separate liquid mixtures into their components.

Additional Information

Boiling point is the temperature at which the pressure exerted by the surroundings upon a liquid is equaled by the pressure exerted by the vapour of the liquid; under this condition, addition of heat results in the transformation of the liquid into its vapour without raising the temperature.

At any temperature a liquid partly vaporizes into the space above it until the pressure exerted by the vapour reaches a characteristic value called the vapour pressure of the liquid at that temperature. As the temperature is increased, the vapour pressure increases; at the boiling point, bubbles of vapour form within the liquid and rise to the surface. The boiling point of a liquid varies according to the applied pressure; the normal boiling point is the temperature at which the vapour pressure is equal to the standard sea-level atmospheric pressure (760 mm [29.92 inches] of mercury). At sea level, water boils at 100° C (212° F). At higher altitudes the temperature of the boiling point is lower.

large


It appears to me that if one wants to make progress in mathematics, one should study the masters and not the pupils. - Niels Henrik Abel.

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

Board footer

Powered by FluxBB