Math Is Fun Forum
  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#426 2019-05-30 00:19:10

ganesh
Administrator
Registered: 2005-06-28
Posts: 28,171

Re: Miscellany

350) Kidney

Kidney, in vertebrates and some invertebrates, organ that maintains water balance and expels metabolic wastes. Primitive and embryonic kidneys consist of two series of specialized tubules that empty into two collecting ducts, the Wolffian ducts. The more advanced kidney (metanephros) of adult reptiles, birds, and mammals is a paired compact organ whose functional units, called nephrons, filter initial urine from the blood, reabsorb water and nutrients, and secrete wastes, producing the final urine, which is expelled.

Reptilian and avian kidneys are made up of many tiny lobules that, in birds, are combined into three or more lobes. Collecting tubules from each lobule empty into a separate branch of the ureter. Reptiles have relatively few nephrons (from 3,000 to 30,000 in lizards), while birds have a great number (around 200,000 in a fowl, twice as many as in a mammal of comparable size).

Mammalian kidneys have a somewhat granular outer section (the cortex), containing the glomeruli and convoluted tubules, and a smooth, somewhat striated inner section (the medulla), containing the loops of Henle and the collecting tubules. As the ureter enters the kidney it enlarges into a cavity, the renal pelvis; urine passes into this pelvis from the collecting tubules. Nephrons are numerous (20,000 in a mouse).

In humans the kidneys are about 10 centimetres long and are located beneath the diaphragm and behind the peritoneum. Each kidney contains 1,000,000–1,250,000 nephrons that filter the entire five-quart water content of the blood every 45 minutes—an equivalent of 160 quarts a day. Of this, only 1 1/2quarts are excreted; the remainder is reabsorbed by the nephrons.

Damaged kidneys secrete an enzyme called renin that stimulates constriction of the blood vessels. When the damage has been caused initially by high blood pressure, the increase in pressure from the constricted vessels causes more kidney damage.

(Wolffian duct, also called Archinephric Duct, one of a pair of tubes that carry urine from primitive or embryonic kidneys to the exterior or to a primitive bladder. In amphibians the reproductive system encroaches on the Wolffian duct; in some species the duct carries both urine and sperm, but most amphibians develop a separate tube to carry urine from the kidney.

In advanced vertebrates the Wolffian duct develops in conjunction with the embryonic kidneys. The mature kidney drains through the ureter, however, and the Wolffian duct develops into parts of the male reproductive system, such as the epididymis and the vas deferens.)

figure-41-03-02.png


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#427 2019-06-01 00:39:40

ganesh
Administrator
Registered: 2005-06-28
Posts: 28,171

Re: Miscellany

351) Arthritis

Arthritis, inflammation of the joints and its effects. Arthritis is a general term, derived from the Greek words arthro-, meaning “joint,” and -itis, meaning “inflammation.” Arthritis can be a major cause of disability. In the United States, for example, data collected from 2007 to 2009 indicated that 21 million adults were affected by arthritis and experienced limited activity as a result of their condition. Overall, the incidence of arthritis was on the rise in that country, with 67 million adults expected to be diagnosed by 2030. Likewise, each year in the United Kingdom, arthritis and related conditions caused more than 10 million adults to consult their doctors. Although the most common types of arthritis are osteoarthritis and rheumatoid arthritis, a variety of other forms exist, including those secondary to infection and metabolic disturbances.

Osteoarthritis

Osteoarthritis, also known as degenerative joint disease, is the most common form of arthritis, affecting nearly one-third of people over age 65. It is characterized by joint pain and mild inflammation due to deterioration of the articular cartilage that normally cushions joints. Joint pain is gradual in onset, occurring after prolonged activity, and is typically deep and achy in nature. One or multiple joints may be affected, predominantly involving the knee, hips, spine, and fingers.

Approximately 90 percent of individuals experience crepitus (crackling noises) in the affected joint with motion. Muscle weakness and joint laxity or stiffness can occur as people become reluctant to move painful joints. Patients tend to have decreased joint stability and are predisposed to injuries such as meniscal and anterior cruciate ligament tears. Hip arthritis can affect gait, while arthritis of the hands can lead to decreased dexterity. Enlargement of the bony processes surrounding affected joints, called osteophytes (bone spurs), are common.

Joint trauma, increased age, obesity, certain genetic factors and occupations, and hobbies or sports that result in excessive joint stresses can result in the cartilaginous changes leading to osteoarthritis. Damage begins with the development of small cracks in the cartilage that are perpendicular to the joint. Eventually, cartilage erodes and breaks off, facilitating painful bone-on-bone contact. In due course, pathologic bony changes, such as osteophytes and subchondral bone cysts, develop and further restrict joint movement and integrity.

Osteoarthritis may be divided into two types, primary and secondary osteoarthritis. Primary osteoarthritis is age-related, affecting 85 percent of individuals 75–79 years of age. Although the etiology is unknown, primary osteoarthritis is associated with decreased water-retaining capacity in the cartilage, analogous to a dried-up rubber band that can easily fall apart. Secondary osteoarthritis is caused by another condition, such as joint trauma, congenital joint malalignment, obesity, hormonal disorders, and osteonecrosis. Treatment for osteoarthritis is directed toward reducing pain and correcting joint mechanics and may include exercise, weight loss, nonsteroidal anti-inflammatory drugs, steroids, and total joint replacement surgery.

Autoimmune Arthritis

Autoimmune arthritis is characterized by joint inflammation and destruction caused by one’s own immune system. Genetic predisposition and inciting factors, such as an infection or trauma, can trigger the inappropriate immune response. Rheumatoid arthritis, which is an autoimmune disease, is often associated with elevations in the serum level of an autoantibody called rheumatoid factor, whereas the seronegative arthropathies are not.

Rheumatoid arthritis is a progressive inflammatory condition that can lead to decreased mobility and joint deformities. The worldwide prevalence is 0.8 percent, with a 2:1 predilection for women over men. Disease onset, mainly occurring in the third and fourth decades of life, may be acute or slowly progressive with initial symptoms of fatigue, weakness, malaise, weight loss, and mild, diffuse joint pain. Rheumatoid arthritis tends to affect the hips, knees, elbows, ankles, spine, hands, and feet symmetrically. The disease course is characterized by periods of remission, followed by progressive exacerbations in which specific joints become warm, swollen, and painful. Morning stiffness, typically lasting about two hours, is a hallmark feature of rheumatoid arthritis. Patients with rheumatoid arthritis tend to complain of joint pain after prolonged periods of inactivity, whereas osteoarthritis is typically exacerbated with extended activity. Rheumatoid arthritis can be severely debilitating, resulting in a variety of deformities. Some patients experience complete remission, which typically occurs within two years of disease onset.

Although the exact cause is unknown, rheumatoid arthritis results from the inflammation of the tissues surrounding the joint space. The thin lining of the joint space becomes thick and inflamed, taking on the form of a mass with fingerlike projections (pannus), which invades the joint space and surrounding bone. Initially, this results in joint laxity. However, with progression, the bones can actually undergo fusion (ankylosis), limiting motion.

The effect rheumatoid arthritis has on the hands is a defining characteristic. Clinically, it can be distinguished from osteoarthritis based on the distribution of joints affected in the hands. Rheumatoid arthritis tends to affect the more proximal joints, whereas osteoarthritis tends to affect the more distal joints of the hands and fingers. In severe cases, joint laxity and tendon rupture result in a characteristic deformity of the fingers and wrist.

Rheumatoid nodules are thick fibrous nodules that form as a result of excessive tissue inflammation in rheumatoid arthritis. These nodules are typically present over pressure points, such as the elbows, Achilles tendon, and flexor surfaces of the fingers. Destruction of peripheral blood vessels (vasculitis) from the inflammatory process can occur in any organ, leading to renal failure, myocardial infarction (heart attack), and intestinal infarction (death of part of the intestine). In addition, rheumatoid arthritis is also associated with an increased risk of infections, osteoporosis (thinning of bones), and atherosclerosis(hardening of arteries).

Diagnosis of rheumatoid arthritis is based on the presence of several clinical features: rheumatoid nodules, elevated levels of rheumatoid factor, and radiographic changes. Although rheumatoid factor is found in 70 to 80 percent of people with rheumatoid arthritis, it cannot be used alone as a diagnostic tool, because multiple conditions can be associated with elevated levels of rheumatoid factor.

Since no therapy cures rheumatoid arthritis, treatment is directed toward decreasing symptoms of pain and inflammation. Surgical treatment may include total joint replacement, carpal tunnel release (cutting of the carpal ligament), and tendon repair. Hand splints are used to slow the progression of finger and wrist deformations.

The overall life span of individuals with rheumatoid arthritis is typically shortened by 5–10 years and is highly dependent on disease severity. Disease severity and the likelihood of extra-articular manifestations are each directly related to serum rheumatoid factor levels.

Several rheumatoid arthritis variants exist. In Sjögren syndrome the characteristic symptoms include dry eyes, dry mouth, and rheumatoid arthritis. Felty syndrome is associated with splenomegaly (enlarged spleen), neutropenia (depressed white blood cell levels), and rheumatoid arthritis. Juvenile rheumatoid arthritis is the most common form of childhood arthritis. Disease etiology and clinical course typically differ from that of adult-onset rheumatoid arthritis, and sufferers are prone to the development of other rheumatologic diseases, including rheumatoid arthritis.

Spondyloarthropathies

Ankylosing spondylitis, Reiter syndrome, psoriatic arthritis, and arthritis associated with inflammatory bowel disease are a subset of conditions known as spondyloarthropathies. Typically affected are the sacrum and vertebral column, and back pain is the most common presenting symptom. Enthesitis, inflammation at the insertion of a tendon or ligament into bone, is a characteristic feature of spondyloarthropathy. Unlike rheumatoid arthritis, spondyloarthropathies are not associated with elevated levels of serum rheumatoid factor. Spondyloarthropathies occur most frequently in males and in individuals with a genetic variation known as HLA-B27.

Ankylosing spondylitis is the most common type of spondyloarthropathy, affecting 0.1 to 0.2 percent of the population in the United States. In a region of Turkey, prevalence was found to be 0.25 percent, and in the United Kingdom prevalence is estimated to range from 0.1 to 2 percent. In all regions, the condition occurs more frequently in males than in females and typically strikes between ages 15 and 40. Genetic studies have shown that more than 90 percent of all patients with ankylosing spondylitis who are white and of western European descent are HLA-B27 positive.

Ankylosing spondylitis is characterized by arthritis of the spine and sacroiliac joints. Extensive inflammation of the spinal column is present, causing a characteristic “bamboo spine” appearance on radiographs. Arthritis first occurs in the sacroiliac joints and gradually progresses up the vertebral column, leading to spinal deformity and immobility. Typical symptoms include back pain, which lessens with activity, and heel pain due to enthesitis of the plantar fascia and Achilles tendon. Hip and shoulder arthritis may occur early in the course of the disease.

Reiter syndrome, a type of reactive arthritis, is characterized by the combination of urethritis, conjunctivitis, and arthritis. Patients typically develop acute oligoarthritis (two to four joints affected) of the lower extremities within weeks of gastrointestinal infection or of acquiring a sexually transmitted disease. Reiter arthritis is not considered an infectious arthritis, because the joint space is actually free of bacteria. Instead, an infection outside the joint triggers this form of arthritis. Other symptoms can include fever, weight loss, back pain, enthesitis of the heel, and dactylitis (sausage-shaped swelling of the fingers and toes). Most cases resolve within one year; however, 15–30 percent of patients develop chronic, sometimes progressive arthritis. Occurring almost exclusively in men, Reiter syndrome is strongly linked to the HLA-B27gene variant, which is present in 65 to 96 percent of symptomatic individuals.

Psoriasis is an immune-mediated inflammatory skin condition characterized by raised red plaques with an accompanying silvery scale, which can be painful and itchy at times. Though typically seen on the elbow, knees, scalp, and ears, plaques can occur on any surface of the body. About 10 percent of people with psoriasis (possibly as many as 30 percent in some regions of the world) develop a specific type of arthritis known as psoriatic arthritis.

Psoriatic arthritis typically occurs after psoriasis has been present for many years. In some cases, however, arthritis may precede psoriasis; less often, the two conditions appear simultaneously. Estimates on the prevalence of psoriatic arthritis vary according to population. However, overall, it is thought to affect nearly 1 percent of the general population, with a peak age of onset between 30 and 55. Usually less destructive than rheumatoid arthritis, psoriatic arthritis tends to be mild and slowly progressive, though certain forms, such as arthritis mutilans, can be quite severe. Occasionally the onset of symptoms associated with psoriatic arthritis is acute, though more often it is insidious, initially presenting as oligoarthritis with enthesitis. Over time, arthritis begins to affect multiple joints (polyarthritis), especially the hands and feet, resulting in dactylitis. Typically, the polyarticular pattern of psoriatic arthritis affects a different subset of finger joints than rheumatoid arthritis. It is not until years after peripheral arthritis has occurred that psoriatic arthritis may affect the axial joints, causing inflammation of the sacroiliac joint (sacroiliitis) and intervertebral joints (spondylitis).

Arthritis mutilans is a more severe and much less common pattern (seen in fewer than 5 percent of psoriatic arthritis cases) resulting in bone destruction with characteristic telescoping of the fingers or toes. In addition, individuals with psoriatic arthritis necessitate more aggressive treatment if the onset of the condition occurs before age 20, if there is a family history of psoriatic arthritis, if there is extensive skin involvement, or if the patient has the HLA-DR4 genotype.
Crohn disease and ulcerative colitis, two types of inflammatory bowel disease, are complicated by a spondyloarthropathy in as many as 20 percent of patients.

Although arthritis associated with inflammatory bowel disease typically occurs in the lower extremities, up to 20 percent of cases demonstrate symptoms identical to ankylosing spondylitis. Arthritis is usually exacerbated in conjunction with inflammatory bowel disease exacerbations and lasts several weeks thereafter.

Crystalloid Arthritis

Joint inflammation, destruction, and pain can occur as a result of the precipitation of crystals in the joint space. Gout and pseudogout are the two primary types of crystalloid arthritis caused by different types of crystalloid precipitates.

Gout is an extremely painful form of arthritis that is caused by the deposition of needle-shaped monosodium urate crystals in the joint space (urate is a form of uric acid). Initially, gout tends to occur in one joint only, typically the big toe (podagra), though it can also occur in the knees, fingers, elbows, and wrists. Pain, frequently beginning at night, can be so intense that patients are sensitive to even the lightest touch. Urate crystal deposition is associated with the buildup of excess serum uric acid (hyperuricemia), a by-product of everyday metabolism that is filtered by the kidneys and excreted in the urine. Causes of excess uric acid production include leukemia or lymphoma, alcohol ingestion, and chemotherapy. Kidney disease and certain medications, such as diuretics, can depress uric acid excretion, leading to hyperuricemia. Although acute gouty attacks are self-limited when hyperuricemia is left untreated for years, such attacks can recur intermittently, involving multiple joints. Chronic tophaceous gout occurs when, after about 10 years, chalky, pasty deposits of monosodium urate crystals begin to accumulate in the soft tissue, tendons, and cartilage, causing the appearance of large round nodules called tophi. At this disease stage, joint pain becomes a persistent symptom.

Gout is most frequently seen in men in their 40s, due to the fact that men tend to have higher baseline levels of serum uric acid. In the early 21st century the prevalence of gout appeared to be on the rise globally, presumably because of increasing longevity, changing dietary and lifestyle factors, and the increasing incidence of insulin-resistant syndromes.

Pseudogout is caused by rhomboid-shaped calcium pyrophosphate crystals deposition (CPPD) into the joint space, which leads to symptoms that closely resemble gout. Typically occurring in one or two joints, such as the knee, ankles, wrists, or shoulders, pseudogout can last between one day and four weeks and is self-limiting in nature. A major predisposing factor is the presence of elevated levels of pyrophosphatein the synovial fluid. Because pyrophosphate excess can result from cellular injury, pseudogout is often precipitated by trauma, surgery, or severe illness. A deficiency in alkaline phosphatase, the enzyme responsible for breaking down pyrophosphate, is another potential cause of pyrophosphate excess.

Other disorders associated with synovial CPPD include hyperparathyroidism, hypothyroidism, hemochromatosis, and Wilson disease. Unlike gout, pseudogout affects both men and women, with more than half at age 85 and older.

Infectious Arthritis

Infectious arthritides are a set of arthritic conditions caused by exposure to certain microorganisms. In some instances the microorganisms infiltrate the joint space and cause destruction, whereas in others an infection stimulates an inappropriate immune response leading to reactive arthritis. Typically caused by bacterial infections, infectious arthritis may also result from fungal and viral infections.

Septic arthritis usually affects a single large joint, such as the knee. Although a multitude of organisms may cause arthritis, Staphylococcus aureus is the most common pathogen. Neisseria gonorrhoeae, the bacteria that causes gonorrhea, is a common pathogen affecting male-female active young adults.

The most common way by which bacteria enter the joint space is through the circulatory system after a bloodstream infection. Microorganisms may also be introduced into the joint by penetrating trauma or surgery. Factors that increase the risk of septic arthritis include very young or old age (e.g., infants and the elderly), recent surgery or skin infection, preexisting arthritic condition, immunosuppression, chronic renal failure, and the presence of a prosthetic joint.

Postinfectious arthritis is seen after a variety of infections. Certain gastrointestinal infections, urinary tract infections, and upper respiratory tract infections can lead to arthritic symptoms after the infections themselves have resolved. Examples include Reiter syndrome and arthritis associated with rheumatic fever.

335x227_understanding_arthritis_and_inflammation_other.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#428 2019-06-03 00:58:30

ganesh
Administrator
Registered: 2005-06-28
Posts: 28,171

Re: Miscellany

352) Peacock

Peacock, any of three species of resplendent birds of the pheasant family, Phasianidae (order Galliformes). Strictly, the male is a peacock, and the female is a peahen; both are peafowl. The two most-recognizable species of peafowl are the blue, or Indian, peacock (Pavo cristatus), of India and Sri Lanka, and the green, or Javanese, peacock (P. muticus), found from Myanmar (Burma) to Java. The Congo peacock(Afropavo congensis), which inhabits the forested interior of the Democratic Republic of the Congo, was discovered in 1936 after a search that began in 1913 with the finding of a single feather.

Natural History

In both species of Pavo, the male has a 90–130-cm (35–50-inch) body and 150-cm (60-inch) train of tail feathers that are coloured a brilliant metallic green. This train is mainly formed of the bird’s upper tail coverts, which are enormously elongated. Each feather is tipped with an iridescent eyespot that is ringed with blue and bronze. In courtship displays, the math elevates his tail, which lies under the train, thus elevating the train and bringing it forward. At the climax of this display, the tail feathers are vibrated, giving the feathers of the train a shimmering appearance and making a rustling sound.

The blue peacock’s body feathers are mostly metallic blue-green. The green peacock, with a train much like that of the blue, has green and bronze body feathers. Hens of both species are green and brown and are almost as big as the male but lack the train and the head ornament. In the wild, both species live in open lowland forests, flocking by day and roosting high in trees at night. During the breeding season, the male forms a harem of two to five hens, each of which lays four to eight whitish eggs in a depression in the ground. The eggs are incubated by the peahen until they hatch some 28 days later. The chicks have all of their feathers when they emerge from their eggs and are capable of flight roughly one week after hatching. Most blue and green peafowl become sexually mature at age three. However, some male blue peafowl have been known to breed as early as age two.

As an ornamental bird, the peacock is a staple resident of many of the world’s zoos and has long been famous throughout the Old World. Green peacocks in captivity must be kept apart from other fowl, though, because of their aggressive disposition. Blue peacocks, though native to warm humid climates, can survive northern winters. Green peacocks, however, cannot tolerate much cold.

The Congo peacock is the only large phasianid in Africa. The math is mainly blue and green with a short rounded tail. The hen is reddish and green with a brown topknot. The species is smaller than those in genus Pavo, growing to roughly between 64 and 70 cm (25 to 28 inches) in length by adulthood.
Conservation Status

The International Union for Conservation of Nature (IUCN) Red List classifies the blue peafowl as a species of least concern. However, the green peacock, whose population declined significantly during the latter half of the 20th century because of overhunting and the destruction of large parts of its natural habitat, is classified by the IUCN as an endangered species. The IUCN has classified the Congo peafowl, which has also experienced declines because of hunting and habitat loss, as a vulnerable species.

peafowl.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#429 2019-06-05 00:02:05

ganesh
Administrator
Registered: 2005-06-28
Posts: 28,171

Re: Miscellany

353) Lion

Lion, (Panthera leo), large, powerfully built cat (family Felidae) that is second in size only to the tiger. The proverbial “king of beasts,” the lion has been one of the best-known wild animals since earliest times. Lions are most active at night and live in a variety of habitats but prefer grassland, savanna, dense scrub, and open woodland. Historically, they ranged across much of Europe, Asia, and Africa, but now they are found mainly in parts of Africa south of the Sahara. An isolated population of about 650 Asiatic lions constitute a slightly smaller race that lives under strict protection in India’s Gir National Park and Wildlife Sanctuary.

General Characteristics

The lion is a well-muscled cat with a long body, large head, and short legs. Size and appearance vary considerably between the genders. The male’s outstanding characteristic is his mane, which varies between different individuals and populations. It may be entirely lacking; it may fringe the face; or it may be full and shaggy, covering the back of the head, neck, and shoulders and continuing onto the throat and chest to join a fringe along the belly. In some lions the mane and fringe are very dark, almost black, giving the cat a majestic appearance. Manes make males look larger and may serve to intimidate rivals or impress prospective mates. A full-grown male is about 1.8–2.1 metres (6–7 feet) long, excluding the 1-metre tail; he stands about 1.2 metres high at the shoulder and weighs 170–230 kg (370–500 pounds). The female, or lioness, is smaller, with a body length of 1.5 metres, a shoulder height of 0.9–1.1 metres, and a weight of 120–180 kg. The lion’s coat is short and varies in colour from buff yellow, orange-brown, or silvery gray to dark brown, with a tuft on the tail tip that is usually darker than the rest of the coat.

Prides

Lions are unique among cats in that they live in a group, or pride. The members of a pride typically spend the day in several scattered groups that may unite to hunt or share a meal. A pride consists of several generations of lionesses, some of which are related, a smaller number of breeding males, and their cubs. The group may consist of as few as 4 or as many as 37 members, but about 15 is the average size. Each pride has a well-defined territory consisting of a core area that is strictly defended against intruding lions and a fringe area where some overlap is tolerated. Where prey is abundant, a territory area may be as small as 20 square km (8 square miles), but if game is sparse, it may cover up to 400 square km. Some prides have been known to use the same territory for decades, passing the area on between females. Lions proclaim their territory by roaring and by scent marking. Their distinctive roar is generally delivered in the evening before a night’s hunting and again before getting up at dawn. Males also proclaim their presence by urinating on bushes, trees, or simply on the ground, leaving a pungent scent behind. Defecation and rubbing against bushes leave different scent markings.

There are a number of competing evolutionary explanations for why lions form groups. Large body size and high density of their main prey probably make group life more efficient for females in terms of energy expenditure. Groups of females, for example, hunt more effectively and are better able to defend cubs against infanticidal males and their hunting territory against other females. The relative importance of these factors is debated, and it is not clear which was responsible for the establishment of group life and which are secondary benefits.

Hunting

Lions prey on a large variety of animals ranging in size from rodents and baboons to Cape (or African) buffalo and hippopotamuses, but they predominantly hunt medium- to large-sized hoofed animals such as wildebeests, zebras, and antelopes. Prey preferences vary geographically as well as between neighbouring prides. Lions are known to take elephants and giraffes, but only if the individual is young or especially sick. They readily eat any meat they can find, including carrion and fresh kills that they scavenge or forcefully steal from hyenas, cheetahs, or wild dogs. Lionesses living in open savanna do most of the hunting, whereas males typically appropriate their meals from the female’s kills. However, male lions are also adept hunters, and in some areas they hunt frequently. Pride males in scrub or wooded habitat spend less time with the females and hunt most of their own meals. Nomadic males must always secure their own food.

Though a group of hunting lions is potentially nature’s most formidable predatory force on land, a high proportion of their hunts fail. The cats pay no attention to the wind’s direction (which can carry their scent to their prey), and they tire after running short distances. Typically, they stalk prey from nearby cover and then burst forth to run it down in a short, rapid rush. After leaping on the prey, the lion lunges at its neck and bites until the animal has been strangled. Other members of the pride quickly crowd around to feed on the kill, usually fighting for access. Hunts are sometimes conducted in groups, with members of a pride encircling a herd or approaching it from opposite directions, then closing in for a kill in the resulting panic. The cats typically gorge themselves and then rest for several days in its vicinity. An adult male can consume more than 34 kg (75 pounds) of meat at a single meal and rest for a week before resuming the hunt. If prey is abundant, both genders typically spend 21 to 22 hours a day resting, sleeping, or sitting and hunt for only 2 or 3 hours a day.

Reproduction And Life Cycle

Both sexes are polygamous and breed throughout the year, but females are usually restricted to the one or two adult males of their pride. In captivity lions often breed every year, but in the wild they usually breed no more than once in two years. Females are receptive to mating for three or four days within a widely variable reproductive cycle. During this time a pair generally mates every 20–30 minutes, with up to 50 copulations per 24 hours. Such extended copulation not only stimulates ovulation in the female but also secures paternity for the male by excluding other males. The gestation period is about 108 days, and the litter size varies from one to six cubs, two to four being usual.

Newborn cubs are helpless and blind and have a thick coat with dark spots that usually disappear with maturity. Cubs are able to follow their mothers at about three months of age and are weaned by six or seven months. They begin participating in kills by 11 months but probably cannot survive on their own until they are two years old. Although lionesses will nurse cubs other than their own, they are surprisingly inattentive mothers and often leave their cubs alone for up to 24 hours. There is a corresponding high mortality rate (e.g., 86 percent in the Serengeti), but survival rates improve after the age of two. In the wild, mating maturity is reached at three or four years of age. Some female cubs remain within the pride when they attain mating maturity, but others are forced out and join other prides or wander as nomads. Male cubs are expelled from the pride at about three years of age and become nomads until they are old enough to try to take over another pride (after age five). Many adult males remain nomads for life. Mating opportunities for nomad males are rare, and competition between male lions to defend a pride’s territory and mate with the pride females is fierce. Cooperating partnerships of two to four males are more successful at maintaining tenure with a pride than individuals, and larger coalitions father more surviving offspring per male. Small coalitions typically comprise related males, whereas larger groups often include unrelated individuals. If a new cohort of males is able to take over a pride, they will seek to kill young cubs sired by their predecessors. This has the effect of shortening the time before the cubs’ mothers are ready to mate again. Females attempt to prevent this infanticide by hiding or directly defending their cubs; lionesses are generally more successful at protecting older cubs, as they would be leaving the pride sooner. In the wild lions seldom live more than 8 to 10 years, chiefly because of attacks by humans or other lions or the effects of kicks and gorings from intended prey animals. In captivity they may live 25 years or more.

Distribution

During the Pleistocene Epoch (2,600,000 to 11,700 years ago), lions ranged across all of North America and Africa, through most of the Balkans, and across Anatolia and the Middle East into India. Genetic studies suggest that the lion evolved in eastern and southern Africa, diversifying into a number of subspecies—such as the Barbary lion (Panthera leo leo) of North Africa, the cave lion (P. leo spelaea) of Europe, the American lion (P. leo atrox) of North and Central America, and the Asiatic lion (P. leo persica) of the Middle East and India—starting about 124,000 years ago.

Lions disappeared from North America about 10,000 years ago, from the Balkans about 2,000 years ago, and from Palestine during the Crusades. By the 21st century their numbers had dwindled to a few tens of thousands, and those outside national parks are rapidly losing their habitat to agriculture. The International Union for the Conservation of Nature (IUCN) lists the species as vulnerable, and several subspecies have died out. At present the lion’s main stronghold is in sub-Saharan Africa, and the Asiatic lion exists only as a remnant population made up of approximately 500 individuals inhabiting India’s Gir National Park on the Kathiawar Peninsula. However, the Asiatic lion’s close genetic similarity with the now-extinct Barbary lion has raised hopes among conservationists that a restored population of the latter may be established in North Africa.

Conflict with humans, especially herders, outside parks is a major problem, and humans living around parks remain the predominant source of mortality for most populations. In 1994, for example, a variant of canine distemper caused the death of an estimated 1,000 lions at the Serengeti National Park. The apparent source of the virus was domestic dogs living along the periphery of the park. Despite such challenges, lion populations are healthy in many African reserves and at Gir, and they are a major tourist draw. High population densities of lions, however, can be a problem, not only for local ranchers but also for the cheetah and African wild dog—critically endangered carnivores that lose their kills, their cubs, and their lives to lions.

The genus Panthera includes leopards, jaguars, and tigers as well as lions. In captivity, lions have been induced to mate with other big cats. The offspring of a lion and a tigress is called a liger; that of a tiger and a lioness, a tigon; that of a leopard and a lioness, a leopon. The cat known as the mountain lion, however, is a New World member of the genus Puma.

3771fced36a4475d99fd40b3b8e47dc5.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#430 2019-06-07 01:10:52

ganesh
Administrator
Registered: 2005-06-28
Posts: 28,171

Re: Miscellany

354) Petroleum

Petroleum is a naturally occurring liquid found beneath the Earth’s surface that can be refined into fuel. Petroleum is a fossil fuel, meaning that it has been created by the decomposition of organic matter over millions of years. It is formed in sedimentary rock under intense heat and pressure. Petroleum is used as fuel to power vehicles, heating units and machines of all sorts, as well as being converted into plastics and other materials. Because of worldwide reliance on petroleum, the petroleum industry is extremely powerful and is a major influence on world politics and the global economy.

Breaking down Petroleum

Petroleum and the extraction and processing of petroleum drives the world economy and global politics. The modern world owes its existence to petroleum. Some of the largest companies in the world are involved in the extraction and processing of petroleum, with other companies creating products that either require hydrocarbons to operate or are petroleum-based: plastics, fertilizers, automobiles, and airplanes. Asphalt, which is used to pave highways, is made from petroleum. Vehicles that drive on highways are made of materials derived from petroleum and run on fuels refined from petroleum.

Petroleum is most often associated with crude oil and the wells dug into the ground to bring that liquid to the surface. The liquid can vary in color: from relatively transparent to dark brown or black. Heavier oils are often the darkest in color. Petroleum contains various types of hydrocarbons, and natural gas is often found dissolved in the liquid in significant amounts. The hydrocarbons can be processed in refineries into different types of fuels. Hydrocarbon molecules in petroleum include asphalt, paraffin, and naphthene.

Petroleum is comprised of a mixture of various hydrocarbons, and can have different chemical and physical properties depending on where it is found in the world. In general, the more dense the petroleum the more difficult it is to process and the less valuable it is. “Light” crude is the easiest to refine and are generally considered the most valuable, while the viscosity of “heavy” crude makes it more expensive to refine. “Sour” crude contains sulfur and sulfuric compounds, which makes the fuel less valuable.

In the petroleum industry, petroleum companies are divided into upstream, midstream and downstream. Upstream deals with crude oil. Midstream refers to the storage and transport of crude oil and other more refined products. Downstream refers to products for consumers such as gasoline.

Disadvantages of Petroleum

Petroleum use is embedded in modern life, but the extraction process and use of petroleum are toxic for the environment. Underwater drilling causes leaks, extraction from oil sands strips the earth or uses precious water and fracking destroys the water table. Transporting petroleum through pipelines has the potential to destroy the local environment and shipping petroleum risks spills and uses energy.

Global petroleum use has had a negative impact on the environment, as the carbon released into the atmosphere increases temperatures and is associated with global warming. Many products created with petroleum derivatives do not biodegrade quickly, and the overuse of fertilizers can damage water supplies.

petroleum-production-Fotolia_9699464_Subscription_Monthly_L-500x350-500x350.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#431 2019-06-09 00:16:20

ganesh
Administrator
Registered: 2005-06-28
Posts: 28,171

Re: Miscellany

355) Mongoose

Mongoose, any of nearly three dozen species of small bold predatory carnivores found mainly in Africa but also in southern Asia and southern Europe. Mongooses are noted for their audacious attacks on highly venomous snakes such as king cobras. The 33 species belong to 14 genera. The most common and probably best-known are the 10 species of the genus Herpestes, among which are the Egyptian mongoose, or ichneumon (H. ichneumon), of Africa and southern Europe and the Indian gray mongoose (H. edwardsi), made famous as Rikki-tikki-tavi in Rudyard Kipling’s ‘The Jungle Books’ (1894 and 1895). The meerkat(Suricata suricatta) is also a member of the mongoose family. The colloquial term mongoose may also include Malagasy mongooses—a group of five species found on the island of Madagascar that are closely related to fossas, falanoucs, and fanalokas (the Malagasy civet) and which most sources classify within the family Eupleridae.

Mongooses are short-legged animals with pointed noses, small ears, and long furry tails. The claws do not retract, and in most species there are five toes on each foot. The fur is gray to brown and is commonly grizzled or flecked with lighter gray. Markings, when present, include stripes, dark legs, and pale or ringed tails. The adult size varies considerably, with the smallest being the dwarf mongoose (Helogale parvula), which measures 17–24 cm (7–10 inches) with a 15–20-cm (approximately 6–8-inch) tail. The largest mongoose is the white-tailed mongoose (Ichneumia albicauda), whose body length measures 48–71 cm (about 19–28 inches) long with a tail that may extend up to an additional 47 cm (18.5 inches).

Natural History

Mongooses live in burrows and feed on small mammals, birds, reptiles, eggs, and occasionally fruit. A number of mongooses, especially those of the genus Herpestes, will attack and kill venomous snakes. They depend on speed and agility, darting at the head of the snake and cracking the skull with a powerful bite. Mongooses are bitten occasionally; however, they possess a glycoprotein that binds to proteins in snake venom, deactivating them and making them harmless.

A number of species are noted for their peculiar habit of opening eggs as well as other food items with hard shells (crabs, mollusks, and nuts). The animal stands on its hind legs and hits the egg against the ground. Sometimes it carries the egg to a rock and, standing with its back to the rock, throws the egg between its legs and against the rock until the shell is broken. Early reports of this behaviour met with skepticism but have been verified by other observers. The Malagasy narrow-striped mongoose (Mungotictis decemlineata) exhibits the same behaviour but lies on its side and uses all four feet to toss the egg.
Most species are active during the day and are terrestrial, although the marsh mongoose (Atilax paludinosus) and a few others are semiaquatic. Some mongooses live alone or in pairs, but others, such as the banded mongoose (Mungos mungo), dwarf mongooses (genus Helogale), and meerkats, live in large groups. Litters usually consist of two to four young.

Some species, mainly the Javan mongoose (Herpestes javanicus) but also the Indian gray mongoose, were introduced to numerous islands, including Mafia Island (off the coast of East Africa), Mauritius, and those of Croatia, Hawaii, and Fiji. Originally intended to help control rodentsand snakes, these introductions were disastrous, because the mongooses severely depleted the populations of native fauna. Because of their potential destructiveness, importation of all mongooses into the United States is strictly regulated.

Classification

The presence of an anal scent gland and associated sac is one of the most important anatomical features that differentiates mongooses from members of the family Viverridae—the group of small Old World mammals that contains civets, genets, and linsangs—in which they were formerly classified. The classification considers the carnivore families Herpestidae and Eupleridae and their subdivisions. According to most classifications, mongooses span family Herpestidae and the Galidiinids (Malagasy mongooses) of family Eupleridae. The euplerid subfamily Euplerinae—made up of fossas, falanoucs, and fanalokas—is also included; these animals are related to Malagasy mongooses, but they are not considered mongooses.

6a01156e439be2970c019b035f4f36970d.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#432 2019-06-11 00:28:13

ganesh
Administrator
Registered: 2005-06-28
Posts: 28,171

Re: Miscellany

356) Chennai

Chennai, formerly Madras, city, capital of Tamil Nadu state, southern India, on the Coromandel Coast of the Bay of Bengal. Known as the “Gateway to South India,” Chennai is a major administrative and cultural centre. Pop. (2001) city, 4,343,645; urban agglom., 6,560,242.

History

Armenian and Portuguese traders were living in the San Thome area of what is now present-day Chennai before the arrival of the British in 1639. Madras was the shortened name of the fishing village Madraspatnam, where the British East India Company built a fort and factory (trading post) in 1639–40. At that time, the weaving of cotton fabrics was a local industry, and the English invited the weavers and native merchants to settle near the fort. By 1652 the factory of Fort St. George was recognized as a presidency (an administrative unit governed by a president), and between 1668 and 1749 the company expanded its control. About 1801, by which time the last of the local rulers had been shorn of his powers, the English had become masters of southern India, and Madras had become their administrative and commercial capital. The government of Tamil Nadu officially changed the name of the city to Chennai in 1996.

The Contemporary City

Madras developed without a plan from its 17th-century core, formed by Fort St. George and the Indian quarters. To the north and northwest are the industrial areas; the main residential areas are to the west and south, where a number of modern high-rise apartment buildings have been constructed, and the old villages are in the centre. The most distinctive buildings in the city are the seven large temples in the Dravidian style, situated in the city sections of George Town, Mylapore, and Triplicane. The Chepauk Palace (the former residence of the nawab [Mughal ruler] of Karnataka) and the University Senate House, both in the Deccan Muslim style, and the Victoria Technical Institute and the High Court buildings, both in the Indo-Saracenic style, are generally considered the most attractive buildings of the British period.

Chennai and its suburbs have more than 600 Hindu temples. The oldest is the Parthasarathi Temple built in the 8th century by Pallava kings. The Kapaleeswarar Temple (16th century) is dedicated to the Hindu god Shiva. Other places of worship within the city include Luz Church (1547–82), one of the oldest churches in Chennai; St. Mary’s Church (1678–80), the first British church in India; the San Thome Basilica (1898), built over the tomb of the apostle St. Thomas; and Wallajah Mosque (1795), built by the nawab of Karnataka. The Armenian Church of the Holy Virgin Mary (1772), in the George Town section of Chennai, surrounds a courtyard cemetery with Armenian tombstones dating from the mid-17th century. The international headquarters of the Theosophical Society is situated in gardens between the Adyar River and the coast. Of particular interest there is a banyan tree dating from about 1600.

Since the late 1990s, software development and electronics manufacturing have made up the bulk of Chennai’s economy. Numerous technology parks, where many foreign companies have offices, are found throughout the city. Other major industries include the manufacture of automobiles, rubber, fertilizer, leather, iron ore, and cotton textiles. Wheat, machinery, iron and steel, and raw cotton are imported. There is an oil refinery in Chennai. Services, especially finance and tourism, are also significant. Hotels, luxury resorts, restaurants, marinas, and parks line Marina Beach, the coastline abutting Chennai city.

Chennai has numerous educational institutions. Professional education can be obtained in the state medical and veterinary sciences colleges, the colleges of engineering and technology, the Tamil Nadu Isai Kalluri music college, the College of Arts and Crafts, and the teacher-training colleges. The city is the site of the University of Madras (1857), which has several advanced centres of research. The Indian Institute of Technology, the Central Leather Research Institute, and the Regional Laboratories of the Council of Scientific and Industrial Research are other noteworthy scientific institutions. The M.S. Swaminathan Research Foundation focuses on agricultural development in Chennai and Tamil Nadu.

Since the 1980s Chennai has emerged as one of the leading medical centres of the country. This was a result of the proliferation of private specialty hospitals, especially those which provide treatment for cardiac and eye ailments. Among the leading medical facilities in the city are the Apollo Hospital, the Madras Medical Mission’s Institute of Cardiovascular Diseases, the Sri Ramachandra University Hospital, the Heart Institute of Chennai, and the Shankara Nethralaya (“Temple of the Eye”), an eye hospital.
Cultural institutions in Chennai include the Madras Music Academy, devoted to the encouragement of Karnatak music—the music of Karnataka, the historical region between the southern Coromandel Coast of the Bay of Bengal and the Deccan plateau. The Kalakshetra is a centre of dance and music, and the Rasika Ranjini Sabha, in Mylapore, encourages the theatrical arts. The city has training centres for kuchipudi and bharata natyam (Indian classical dance forms). Kalakshetra and Sri Krishna Gana Sabha, a cultural institution, both host annual dance festivals. The suburban town of Kodambakkam, with its numerous film studios, is described as the Hollywood of southern India. Three theatres—the Children’s Theatre, the Annamalai Manram, and the Museum Theatre—are popular. The Chennai Government Museum has exhibitions on the history and physical aspects of Tamil Nadu. There is a small collection of East India Company antiquities in the Fort Museum (within Fort St. George) and a collection of paintings in the National Art Gallery.

Squash, cricket, tennis, and hockey are popular sports in Chennai and its surrounding region. The Madras Cricket Club (1848), located behind the Chepauk Palace, is host to major national sports tournaments. The city has many other clubs and associations including motor sports, chess, and equestrian events. Rowing and yachting have a small but loyal following at the Madras Boat Club (1867) and the Royal Madras Yacht Club (1911). Guindy National Park is a wildlife sanctuary situated in the heart of the city. Other places for recreation in and around Chennai are the Chennai Crocodile Bank, Pulicat Lake (a large saltwater lagoon), a bird sanctuary, and a zoological park.

Chennai is well connected by road, rail, air, and sea. It has an international airport and seaport. Within the city a network of bus services and auto-rickshaws are common modes of transport. The historic town of Mamallapuram with its shore temple, about 37 miles (60 km) south of Chennai, is a popular tourist destination.

chennai.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#433 2019-06-12 00:26:25

ganesh
Administrator
Registered: 2005-06-28
Posts: 28,171

Re: Miscellany

357) Fire engine

Fire engine, also called fire truck, mobile (nowadays self-propelled) piece of equipment used in firefighting. Early fire engines were hand pumps equipped with reservoirs and were moved to the scene of a fire by human or animal power. For large fires, the reservoir was kept filled by a bucket brigade, but that method was inefficient, and the short range of the stream of water necessitated positioning the apparatus dangerously close to the fire. The introduction of more-powerful pumps and flexible hose solved this problem, and a great advance was made with the introduction of the steam-powered pump in many large cities in the 19th century. Steam-powered fire engines were used in the Chicago Fire of 1871. A steam engine remained in use by the New York City Fire Department as late as 1932.

Horse traction was replaced early in the 20th century by the internal-combustion engine, which also was used to power the pump. The basic automotive hose carrier quickly assumed its modern form; it carries a powerful pump, a large amount of hose (usually about 1,000 feet, or 300 metres), and a water tank for use where a supply of water is not available. Specialized auxiliary vehicles were also soon developed, including water tank trucks for rural areas. The ladder truck (hook and ladder) mounts a ladder that may be capable of rapid extension to 150 feet, often with a large-capacity nozzle built into the top section. The older type of overlength ladder truck is equipped with steerable rear wheels for negotiating city streets. The main ladder is mounted on the truck’s body; when it is to be raised into the air, the hinged main ladder and its sliding extensions are moved into place by a hydraulic pump. The ladder truck carries some 200 feet or more of ladders to be used from the ground. The snorkel truck, introduced by the Chicago Fire Department in 1958, is equipped with a hydraulically operated crane mounted on a turntable, for use in either firefighting or rescue work. The rescue truck carries such specialized equipment as cutting and wrecking tools, gas masks and inhalators, portable lighting and smoke-ejection devices, chemical extinguishers, life nets, shortwave radios, and medical equipment.

How Fire Engines Work

We see fire engines all the time, but have you ever stopped to think about all of the things that these machines do? Fire engines are amazing pieces of equipment that allow firefighters to perform their jobs and get to fire scenes quickly. The important thing to know about a fire engine is that it is a combination of a personnel carrier, tool box and water tanker. All three components are essential to fighting fires.
With different fire departments having varying needs, fire engines come in all shapes, sizes and colors. In this article, we will take a close look at an Emergency One (E-One) pumper/tanker engine and a Pierce ladder truck. We'll also open up all the doors and compartments on these trucks and see what's inside!

Pump It Up

The primary function of any pumper/tanker fire engine is to carry water in a water tank or drag water in from an outside source, such as a fire hydrant, drop tank, swimming pool or lake.

On this pumper/tanker fire engine, the primary water tank is inside the vehicle, it holds 1,000 gallons (3,785 liters) of water and it runs down the center in the rear of the truck. A drop tank is like a big aboveground pool that can hold about 2,000 gallons of water. A 6-inch diameter, hard suction line is used to drag water out of the drop tank or other exterior water source.

Water stored in the engine's tank or sucked through an outside source is then discharged through water lines, or hoses. These lines are connected at points around the truck. We'll look at all the different lines later.

The heart of the pump/tanker is the impeller water pump. On this particular fire engine, the pump is located just behind the jumpseat area, where the firefighters sit. An impeller is a rotor-like device that has curved blades. Driven by its own diesel engine, the impeller spins inside the pump at a high rate. When water comes into the pump, it hits the inner part of the impeller and is slung outward. Water pressure is created by centrifugal force from the spinning action of the impeller. A valve opens to allow water to hit the center of the rotating impeller. This action is described as entering the eye of the impeller, according to Capt. David Price of the Bayleaf Volunteer Fire Department in North Carolina.

You control the hoses using the truck's pump panel on top of the fire engine. The pump panel is a series of levers and switches that controls how much water is flowing and which lines are being discharged. When arriving at a fire scene, the driver will jump out and climb to the top of the truck to begin pump operation. An indicator -- a series of red lights on the pump panel -- lets the operator know how much water is left in the tank.

The first thing the pump operator is going to do is make sure that the valve between the tank and pump is open. An electric switch on the right side of the pump will open that valve, and ensure that water is flowing into the pump. Next, the operator will check to see which lines have been pulled off the fire engine by the firefighters, and the operator will discharge those lines. "Discharge" means that water is allowed to flow out of the pump and into the hose. The lines are color-coded to make it easy for the operator to know which lines to discharge. The color of the line corresponds to a plate below each lever on the pump panel.

Most of the discharging is controlled by a built-in electronic device, called a mastermind. It automatically controls the pump, and runs the pressure up or down. It also has a built-in relief valve, so that if one person suddenly cuts off a line, the pressure from that line doesn't automatically get fed into another line.
This truck also has a foam system, and carries about 20 gallons (76 L) of foam. The foam tank is embedded in the main water tank. Pumper/tankers carry different types of foam. This particular truck carries Class A foam, which can be used to saturate materials inside a structure to keep those materials from re-igniting. Class B foam is used to fight car fires and other fires where flammable liquids might be present.

In the next section, you'll learn more about the various hoses on the fire engine.

Hose It Down

There are many types of hoses on the fire engine, and each has its own specific role in putting out a blaze. Hoses, also called lines, will put out different amounts of water depending on the hose length, diameter and the amount of pressure in the pump.

When responding to a house fire, the firefighters will immediately pull off the crosslay hoses. These lines are located directly below the pump panel. They lay out in the open and are light, so they are easy to get off the fire engine for attacking a fire. Crosslays are 200 feet (61 m) long, have a diameter of 1.5 inches and can gush water at 95 gallons (360 L) per minute. For smaller fires, such as small wood fires or chimney fires, the small booster line is adequate. A booster line is the smallest hose on the truck and has a diameter of about 1 inch.

Located directly above the pump panel is the deluge gun, also called a deck gun or master stream. Just by looking at it, you know why this water cannon carries those names. The deluge gun is used to put a lot of water on large fires. It can put out in excess of 1,000 gallons per minute.

"If we get a big fire, like a house fire that we can't control with handlines, we can darken it down with that," Doug Mchose, of the Bayleaf Volunteer Fire Department, said. "We can use that on it for a couple of minutes to knock it down to where we can get in there."

The truck also has at least three lines called preconnects. These lines are preconnected to the truck in order to save time at the fire scene. There's one preconnect on the driver's side, one on the back and one on the captain's side of the truck. These lines are between 1.5 and 2.5 inches in diameter, and can put out 250 gallons (946 liters) per minute.

A 5-inch-diameter hose is stored on top of the truck. There is a total of 1,000 feet (305 m) of this line, but it is stored in 100-foot sections. This is the line that the firefighters will hook up to fire hydrants. There's also another 2.5-inch line stored on top of the truck.

In one of the compartments on the captain's side of the truck, there are extra sections of hose. There are two extra sections of the 5-inch hose: a 25-foot and a 50-foot section. These two sections are called curb jumpers, because they typically lay on the curb. These sections give firefighters just a little bit more line to connect to a fire hydrant without having to get another 100-foot section down.

Also stored in this compartment is a hose pack. A hose pack is a small, bundled hose that can be taken to the higher levels of a building. It is banded to make it easier to carry up a ladder. A firefighter can just throw it over his or her shoulder and take it up and through a window. Usually, a hose pack is used if the other lines can't reach inside. This hoseline will connect to the hose that runs up the ladder of the ladder truck, which you will learn more about in the next section.

Going Up!

When a fire breaks out in a multi-story building, a ladder truck is used to get firefighters to the higher floors.

The ladder on the truck is raised and lowered using a hydraulic piston rod. As hydraulic fluid enters this piston rod through one of two hoses, the pressure of the fluid will either cause the rod to extend or retract. If the piston rod extends, the ladder will go up. If it retracts, the ladder will come down.

Another set of hydraulic hoses allow the sections of the ladder to telescope up and down. A hydraulic motor is used to rotate the gear that moves the ladder from left to right. While the ladder is in use, four outriggers are extended to stabilize the truck.

On this 105-foot (32-m) ladder truck built by Pierce, the ladder also has a 3-inch pipe that runs the length of the ladder. This is an extra water line that is sometimes used to spray water on fires that are in a high spot, or to spray water down on a fire. This pipe can spray out 1,000 gallons per minute.

The ladder is controlled by a series of joysticks at the base of the ladder. The outriggers are controlled in the back of the truck. Each outrigger has four control levers: two for extending the beam out and two for lowering the leg to the ground. Metal pads are placed under the legs to prevent the force of the truck from cracking asphalt surfaces.

The Ultimate Mobile Toolbox

Firefighters have to take dozens of tools and other equipment when responding to a fire or medical call. All of this equipment is stored in several compartments that line the sides and back of the fire engine.

Let's open up each compartment and see what's inside.

Here is a list of some of the tools found on a fire engine:

•    Barrel strainer - This is an attachment put on a hard suction hose when sucking water out of a lake or pond. This tool keeps debris out of the water supply.
•    Nozzles - Different nozzles are needed for different situations. Fog nozzles put out more of a strong mist of water. Other nozzles direct water in a solid stream. There's also a piercing nozzlethat can be used to punch through walls and spray areas that can't be reached otherwise.
•    Foam inductor - This is a special nozzle used to mix water and foam.
•    Haligan tool - This tool looks similar to a crowbar.
•    Sheet rock puller - This tool is used to peel back the sheet rock on walls so that water can be sprayed inside the wall.
•    Pike poles - These spear-like tools are about 10 to 12 feet long and are thrust into the ceiling to pull sheet rock down.
•    EMS equipment - Most fire engines carry a defibrillator, an emergency oxygen tank and a trauma jump kit, which includes all of the first aid equipment needed for emergencies.
•    Gated Y - This special hose adapter can be attached to a line to allow two smaller lines to run off of the same water source.
•    Spanner wrenches - These unique tools are used to tighten the lines to the fire engine or to a hydrant.
•    Hydrant wrench - This is the wrench used to turn the hydrant on.
•    Jaws of Life - This extrication equipment is used to free victims from car or building accidents. Read How the 'Jaws of Life' Work to learn more about these hydraulic machines.
•    Exhaust fan - This fan is placed in the doorway to drag smoke out of the house. Fire engines may also carry a positive-pressure exhaust fan, which blows air through the house and out the other side.
•    Salvage covers - These are used for covering furniture on a lower floor while firefighters attack a fire on a floor above.

In addition, fire engines also carry bolt cutters, a sledge hammer, a fire extinguisher, a water cooler, a 24-foot (7-m) extension ladder and a 16-foot (5-m) roof ladder. Some trucks may also carry chain saws, rappelling rope and backboards, which are used to transport injured people.
As you can see, there are a lot of tools and devices stored on a fire engine, and the design of the fire engine maximizes all possible storage space.

Grab a Seat

The unique design of a fire engine allows it to carry a lot of crew to the fire scene. Up to eight firefighters, including the driver and the captain, can fit onto this E-One fire engine. The cabin of the fire engine is divided into two sections: the front seat, where the driver and captain sit, and the jumpseat area, where the firefighters sit.

As mentioned before, the driver is responsible for controlling the pump panel. For this reason, there are some basic controls on the driver's dashboard that are related to that task. Two red switches near his left hand operate a generator and jet dump. A jet dump essentially discharges all of the water in the tank into a drop tank through a large discharge outlet in the back.

The driver has another switch within reach that activates the automatic tire chains, which are sometimes needed during the winter to drive through ice and snow. Automatic tire chains save the time and hassle of jacking the truck up and putting tire chains on manually. Click here to learn more about automatic tire chains.

The captain sits in the passenger seat next to the driver in the front section of the cab. The front section of the cab has a firecom, which are radio headsets that allow the captain and driver to communicate with the firefighters sitting in the jumpseat area. The captain will often give instructions to the firefighters on the way to the fire scene.

The jumpseat area is like the backseat of your car. This is the area where four to six firefighters sit on the way to the fire. There is one row of four seats that sit back-to-back with the captain and driver. There are also two fold-down seats directly across from the row of four seats. In between the fold-down seats, there several yellow pouches that contain the firefighters' masks.

Air packs are located in the back of the four main seats. By already having the air packs on the truck, all the firefighters have to do is put them on their shoulders. Each air pack has 30 minutes of air.

smpo0623engines01.jpg?w=400


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

#434 Yesterday 00:38:37

ganesh
Administrator
Registered: 2005-06-28
Posts: 28,171

Re: Miscellany

358) Duralumin

Duralmin, strong, hard, lightweight alloy of aluminum, widely used in aircraft construction, discovered in 1906 and patented in 1909 by Alfred Wilm, a German metallurgist; it was originally made only at the company Dürener Metallwerke at Düren, Germany. (The name is a contraction of Dürener and aluminum.) The original composition has been varied for particular applications; it may contain about 4 percent copper, 0.5–1 percent manganese, 0.5–1.5 percent magnesium, and, in some formulations, some silicon. After heat treatment and aging, these alloys are comparable to soft steel in strength.

Duralumin alloys are relatively soft, ductile, and workable in the normal state; they may be rolled, forged, extruded, or drawn into a variety of shapes and products. Their light weight and consequent high strength per unit weight compared with steel suit them for aircraft construction. Because aluminum loses corrosion resistance when alloyed, a special laminated sheet form called alclad is used for aircraft construction; it has thin surface layers of pure aluminum covering the strong duralumin core.

Duralumin is an alloy, a trade name given to the earliest types of the age hardenable aluminum alloys. It is an alloy made up of 90% aluminum,4% copper, 1% magnesium and 0.5% to 1% manganese. It is a very hard alloy. These alloys are used in places where hard alloys are required, for example in the vehicle armor that is used in the defense industry. These alloys were the first widely used deformable aluminum alloys.

Duralumin is a hard, but a lightweight alloy of aluminum. It has a typical yield strength of 450 Mpa, and there are certain other variations, that depend on the composition, type and temper.

Duralumin Metal

Duralumin is actually a metal, which us an alloy of aluminum, copper, magnesium and manganese. Duralumin is a special kind of metal, and is made strong by subjecting it to heat treatment. It may be well spun, tempered, riveted, welded or machinated. The duralumin, which is effectively given heat treatment, can be effectively being resistant to corrosion. It can carry heavy loads, and is ductile. It is specially suited for aircraft construction.

When copper is added to the alloy, its strength increases, but then it also makes it susceptible to corrosion. For the duralumin sheet products, the metallurgical bonding of the highly pure metal layer can increase the corrosion resistance. These sheets are called alclad, and are generally used by the aircraft industry.

Duralumin Properties

Duralumin is a strong, light weighted and hard alloy of aluminum. It is also reflective and impermeable. It is a malleable metal, and can be easily shaped. It is a very good conductor of heat and electricity. It is odorless, and reacts with the oxygen that is around, and forms aluminum oxide. It is resistant to corrosion. It has a thin surface, which is made up of a layer of pure aluminum, which is corrosion resistant, and covers the core of the strong duralumin. Generally, Duralumin alloys are soft, ductile and workable when they are in normal state. They can be easily rolled, folded or forged. They can also be drawn into a variety of shapes and forges. It has a high strength, which can be easily lost during wielding. So it can be easily transformed, and hence is used in aircraft construction. It is suited for aircraft construction because of its lightweight and high strength.

Duralumin Uses

Duralumin has the following uses:

•    It is used for making wire, bar and rods for the screw machine products. It is used in places where good strength and good machinability are required.
•    It is used in heavy-duty forgings, wheels, plates, extrusions, aircraft fittings, space booster tankage and trauck frame, and other suspension components. It finds applications in places where high strength is required, and services at elevated temperatures.
•    It is used for making Aircraft structure, truck wheels, screw machine products, rivets and other structural application products.
•    It is used as a sheet for the auto body panels.
•    It is also used in forgings, in aircraft engine pistons, impellers of the jet engine sand the compressor rings.
•    It is also used for making die and hand forgings.

There is a proper method that is used for the conversion of Duralumin into ingots. It has to undergo a high pressure before being converted to ingots. This pressure treatment includes rolling, pressing and so on. It is then converted to plates, sections, sheets, tubes and wires. It is quenched in water at a temperature of about 500 degree Celsius, for about four days. This is called natural aging. Often, it undergoes artificial aging at a temperature of about 190 degree Celsius, This heat treatment ultimately leads to the inculcation of various strengths in duralumin. In fact, the initial period in which metal airplane was constructed with duralumin; it had to go through these processes. Duralumin is also used widely in the surface transportation, aviation and mechanical engineering.

Duralumin.jpg


It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge - Enrico Fermi. 

Nothing is better than reading and gaining more and more knowledge - Stephen William Hawking.

Offline

Board footer

Powered by FluxBB