Math Is Fun Forum
  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 2014-09-10 12:24:12

MarvinRayBurns
Member
Registered: 2011-01-09
Posts: 15

Special partial sums

For all real a, the partial sums s(n)= sum((-1)^k (k^(1/k) -a), k=1..n) are bounded so that their limit points form an interval [-1.+  the MRB constant +a, MRB constant] of length 1-a, where the MRB constant is limit(sum((-1)^k*(k^(1/k)), k = 1 ..2*N),N=infinity).

For all complex z, the upper limit point of  sn= sum((-1)^k (k^(1/k) -z), k=1..n) is the  the MRB constant.

Last edited by MarvinRayBurns (2014-09-14 09:08:59)

Offline

Board footer

Powered by FluxBB