Discussion about math, puzzles, games and fun. Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ π -¹ ² ³ °

You are not logged in.

- Topics: Active | Unanswered

**anonimnystefy****Real Member**- From: The Foundation
- Registered: 2011-05-23
- Posts: 15,522

I have no idea.

Here lies the reader who will never open this book. He is forever dead.

Taking a new step, uttering a new word, is what people fear most. ― Fyodor Dostoyevsky, Crime and Punishment

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,443

**In mathematics, you don't understand things. You just get used to them.Of course that result can be rigorously obtained, but who cares?Combinatorics is Algebra and Algebra is Combinatorics.**

Offline

**anonimnystefy****Real Member**- From: The Foundation
- Registered: 2011-05-23
- Posts: 15,522

Hm? I just expanded the GF.

Here lies the reader who will never open this book. He is forever dead.

Taking a new step, uttering a new word, is what people fear most. ― Fyodor Dostoyevsky, Crime and Punishment

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,443

And the method to get the prime coefficients?

**In mathematics, you don't understand things. You just get used to them.Of course that result can be rigorously obtained, but who cares?Combinatorics is Algebra and Algebra is Combinatorics.**

Offline

**anonimnystefy****Real Member**- From: The Foundation
- Registered: 2011-05-23
- Posts: 15,522

```
gf[x_] := Expand[Sum[x^i/6, {i, 1, 6}]^1000]
CoefficientList[gf[x], x][[
Table[1 + Prime[i], {i, 169, 783}]]] // Total
```

That's my code for the problem.

Here lies the reader who will never open this book. He is forever dead.

Taking a new step, uttering a new word, is what people fear most. ― Fyodor Dostoyevsky, Crime and Punishment

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,443

That does not get the right answer?!

**In mathematics, you don't understand things. You just get used to them.Of course that result can be rigorously obtained, but who cares?Combinatorics is Algebra and Algebra is Combinatorics.**

Offline

**anonimnystefy****Real Member**- From: The Foundation
- Registered: 2011-05-23
- Posts: 15,522

Subtract that from 1.

Here lies the reader who will never open this book. He is forever dead.

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,443

Are you sure?

Of course that result can be rigorously obtained, but who cares?

Combinatorics is Algebra and Algebra is Combinatorics.

Offline

**anonimnystefy****Real Member**- From: The Foundation
- Registered: 2011-05-23
- Posts: 15,522

Yes, I am.

Here lies the reader who will never open this book. He is forever dead.

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,443

Hi;

Of course that result can be rigorously obtained, but who cares?

Combinatorics is Algebra and Algebra is Combinatorics.

Offline

**anonimnystefy****Real Member**- From: The Foundation
- Registered: 2011-05-23
- Posts: 15,522

That is not what I am getting.

Here lies the reader who will never open this book. He is forever dead.

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,443

```
gf[x_] := Expand[Sum[x^i/6, {i, 1, 6}]^1000]
1 - CoefficientList[gf[x], x][[
Table[1 + Prime[i], {i, 169, 783}]]] // Total
```

You are running that?

Of course that result can be rigorously obtained, but who cares?

Combinatorics is Algebra and Algebra is Combinatorics.

Offline

**anonimnystefy****Real Member**- From: The Foundation
- Registered: 2011-05-23
- Posts: 15,522

No.

```
gf[x_] := Expand[Sum[x^i/6, {i, 1, 6}]^1000]
CoefficientList[gf[x], x][[
Table[1 + Prime[i], {i, 169, 783}]]] // Total
```

*Last edited by anonimnystefy (2013-12-13 05:55:00)*

Here lies the reader who will never open this book. He is forever dead.

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,443

Okay, then you subtract from 1. I see.

Of course that result can be rigorously obtained, but who cares?

Combinatorics is Algebra and Algebra is Combinatorics.

Offline

**anonimnystefy****Real Member**- From: The Foundation
- Registered: 2011-05-23
- Posts: 15,522

Yes.

Here lies the reader who will never open this book. He is forever dead.

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,443

Now do you see if there is any value to the question?

Of course that result can be rigorously obtained, but who cares?

Combinatorics is Algebra and Algebra is Combinatorics.

Offline

**anonimnystefy****Real Member**- From: The Foundation
- Registered: 2011-05-23
- Posts: 15,522

Because it cannot be solved by hand?

Here lies the reader who will never open this book. He is forever dead.

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,443

Yes, so it is a good exercise for using M.

Of course that result can be rigorously obtained, but who cares?

Combinatorics is Algebra and Algebra is Combinatorics.

Offline

**anonimnystefy****Real Member**- From: The Foundation
- Registered: 2011-05-23
- Posts: 15,522

Okay, that much I got. is there any other way other than just brute force expanding, eg., an asymptotic form or something?

8...

Here lies the reader who will never open this book. He is forever dead.

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,443

Yes, there are many ways.

Of course that result can be rigorously obtained, but who cares?

Combinatorics is Algebra and Algebra is Combinatorics.

Offline

**anonimnystefy****Real Member**- From: The Foundation
- Registered: 2011-05-23
- Posts: 15,522

Like what?

5...

Here lies the reader who will never open this book. He is forever dead.

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,443

They are all computationally intensive but an asymptotic form is possible. Also, there is my paper on this problem except much, much larger.

Of course that result can be rigorously obtained, but who cares?

Combinatorics is Algebra and Algebra is Combinatorics.

Offline

**anonimnystefy****Real Member**- From: The Foundation
- Registered: 2011-05-23
- Posts: 15,522

Can you post the link?

4...

*Last edited by anonimnystefy (2013-12-13 10:38:18)*

Here lies the reader who will never open this book. He is forever dead.

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,443

I do not have a link but I have notes on it.

Of course that result can be rigorously obtained, but who cares?

Combinatorics is Algebra and Algebra is Combinatorics.

Offline

**anonimnystefy****Real Member**- From: The Foundation
- Registered: 2011-05-23
- Posts: 15,522

Can you post them somehow?

Here lies the reader who will never open this book. He is forever dead.

Offline