Discussion about math, puzzles, games and fun. Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ π -¹ ² ³ °

You are not logged in.

- Topics: Active | Unanswered

Pages: **1**

**mathstudent2000****Member**- Registered: 2013-07-26
- Posts: 79

1. For some positive real number r, the line x + y = r is tangent to the circle x^2 + y^2 = r. Find r.

2. Find the center of the circle passing through the points (-1,0), (1,0), and (3,1). Express your answer in the form "(a,b)."

3. A line with slope 3 is 2 units away from the origin. Find the area of the triangle formed by this line and the coordinate axes.

4. Find the maximum value of y/x over all real numbers x and y that satisfy (x - 3)^2 + (y - 3)^2 = 6.

Genius is one percent inspiration and ninety-nine percent perspiration

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,665

Hi mathstudent2000;

**In mathematics, you don't understand things. You just get used to them.Of course that result can be rigorously obtained, but who cares?Combinatorics is Algebra and Algebra is Combinatorics.**

Offline

**mathstudent2000****Member**- Registered: 2013-07-26
- Posts: 79

For no. 3 its not 20/3, but 6 because i tried it yesterday and got it correct

Genius is one percent inspiration and ninety-nine percent perspiration

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,665

Who said it was 20 / 3?

**In mathematics, you don't understand things. You just get used to them.Of course that result can be rigorously obtained, but who cares?Combinatorics is Algebra and Algebra is Combinatorics.**

Offline

**mathstudent2000****Member**- Registered: 2013-07-26
- Posts: 79

sorry, i think i saw another problem's answer

Genius is one percent inspiration and ninety-nine percent perspiration

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 86,665

Hi;

We are all done here?

**In mathematics, you don't understand things. You just get used to them.Of course that result can be rigorously obtained, but who cares?Combinatorics is Algebra and Algebra is Combinatorics.**

Offline

Pages: **1**