You are not logged in.

- Topics: Active | Unanswered

**MathsIsFun****Administrator**- Registered: 2005-01-21
- Posts: 7,608

Had a go at explaining Euler's Formula for Complex Numbers

What do you all think?

Offline

**bob bundy****Moderator**- Registered: 2010-06-20
- Posts: 7,548

hi MathsIsFun,

Another great page! Well done!

I wish I could turn the clock back and get the inventor of 'imaginary numbers' to call them something else. It has led to the unfortunate idea, held by some, that imaginary numbers have less validity than 'reals', because they are made up and don't really exist (whatever that means).

I believe that the proper reason for this name is that the second axis on the Argand diagram is the **image** of the first. Possibly you could add a note to this effect?

Bob

Children are not defined by school ...........The Fonz

You cannot teach a man anything; you can only help him find it within himself..........Galileo Galilei

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 103,691

Hi MIF;

Thanks for the page.

**In mathematics, you don't understand things. You just get used to them.****If it ain't broke, fix it until it is.** **A number by itself is useful, but it is far more useful to know how accurate or certain that number is.**

Offline

**MathsIsFun****Administrator**- Registered: 2005-01-21
- Posts: 7,608

bob bundy wrote:

I believe that the proper reason for this name is that the second axis on the Argand diagram is the

imageof the first.

That would be a nice reason, but I believe "imaginary" was used to ridicule them, until they found the complex realm was a hidden truth behind many things.

Offline

**bobbym****Administrator**- From: Bumpkinland
- Registered: 2009-04-12
- Posts: 103,691

Hi;

Some books give the credit to Descartes who was ridiculing them.

In 50 A.D., Heron of Alexandria studied the volume of an impossible section of a pyramid. What made it impossible was when he had to take √(81-114). However, he deemed this impossible, and soon gave up.

Issac Newton agreed with Descartes, and Albert Girad even went as far as to call these, solutions impossible

Interesting!

**In mathematics, you don't understand things. You just get used to them.****If it ain't broke, fix it until it is.**

Offline