Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫  π  -¹ ² ³ °

You are not logged in.

## #1 2013-02-08 23:49:33

Johnathon bresly
Guest

### Convergence

What is the difference between absolute and conditional convergence?[examples will be appreciated]

## #2 2013-02-09 04:43:18

bobbym
bumpkin
From: Bumpkinland
Registered: 2009-04-12
Posts: 109,606

### Re: Convergence

In mathematics, you don't understand things. You just get used to them.
If it ain't broke, fix it until it is.
Always satisfy the Prime Directive of getting the right answer above all else.

Offline

## #3 2013-02-11 01:39:33

scientia
Member
Registered: 2009-11-13
Posts: 224

### Re: Convergence

The sequence $\sum_na_n$ is absolutely convergent iff both $\sum_{n=0}^{\infty}a_n$ and $\sum_{n=0}^\infty|a_n|$ converge.

It is conditionally convergent iff $\sum_{n=0}^{\infty}a_n$ converges while $\sum_{n=0}^\infty|a_n|$ diverges.

Examples.

$\sum_n\frac{(-1)^n}{2^n}$ is absolutely convergent. We have $\sum_{n=0}^\infty\frac{(-1)^n}{2^n}=1-\frac12+\frac14-\frac18+\cdots=\frac23$ and $\sum_{n=0}^\infty\left|\frac{(-1)^n}{2^n}\right|=1+\frac12+\frac14+\cdots=2$.

$\sum_n\frac{(-1)^n}n$ is conditionally convergent. We have $\sum_{n=0}^\infty\frac{(-1)^n}n=1-\frac12+\frac13-\frac14+\cdots=\ln2$ while $\sum_{n=0}^\infty\left|\frac{(-1)^n}n\right|=1+\frac12+\frac13+\cdots$ is divergent.

Offline