Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

## #1 2013-02-06 13:13:41

ReallyConfused
Guest

### Fibonacci series

Is there any formulae for finding nth fibonacci series?

## #2 2013-02-06 13:55:15

bobbym

Offline

### Re: Fibonacci series

Hi;

Welcome to the forum. There simplest is called the Binet formula.

In mathematics, you don't understand things. You just get used to them.
I have the result, but I do not yet know how to get it.
All physicists, and a good many quite respectable mathematicians are contemptuous about proof.

## #3 2013-02-06 16:28:11

ReallyConfused
Guest

### Re: Fibonacci series

Thank you but that formulae is for nth fibonacci number,i want a formula for the sum of fibonacci numbers from 1st to nth fibonacci number(nth series)

## #4 2013-02-06 17:36:12

bobbym

Offline

### Re: Fibonacci series

Hi;

In mathematics, you don't understand things. You just get used to them.
I have the result, but I do not yet know how to get it.
All physicists, and a good many quite respectable mathematicians are contemptuous about proof.

## #5 2013-02-06 17:55:36

ReallyConfused
Guest

### Re: Fibonacci series

Wow,that works perfectly ,why does it work?

## #6 2013-02-06 18:33:55

bobbym

Offline

### Re: Fibonacci series

Hi;

http://en.wikipedia.org/wiki/Fibonacci_number

About 1 / 3 down the page there is an explanation for how to do the sum by grouping.

In mathematics, you don't understand things. You just get used to them.
I have the result, but I do not yet know how to get it.
All physicists, and a good many quite respectable mathematicians are contemptuous about proof.