Math Is Fun Forum
  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#1 2007-03-23 02:06:21

Registered: 2006-04-29
Posts: 50

Singular Perturbations

Ey"+(3+x)y'+xy=0, 0<x<1, 0<E<<1, subject to y(0)=20, y(1)=64. Find a leading approximation to the inner and outer solutions and match them.

However, I can't seem to match the two solutions, because when E tends to 0 in the inner solution, the inner solution tends to 20. While, my outer solution tends to 27e as E tends to 0.

I stretched x=Ex, and since the boundary layer is near x=0, i used y(1)=64 for the outer solution, and y(0)=20 for the inner.

Please help if anyone knows about this.

Last edited by renjer (2007-03-23 02:07:33)


Board footer

Powered by FluxBB