Math Is Fun Forum
  Discussion about math, puzzles, games and fun.   Useful symbols: √ ∞ ≠ ≤ ≥ ≈ ⇒ ∈ Δ θ ∴ ∑ ∫ π -

Login

Username

Password

Not registered yet?

#1 2013-11-29 11:58:21

MathsIsFun
Administrator

Offline

Differentiable

A draft page: Differentiable

Is it correct?

Ideas for improvement?


"The physicists defer only to mathematicians, and the mathematicians defer only to God ..."  - Leon M. Lederman
 

#2 2013-11-29 14:09:55

bobbym
Administrator

Online

Re: Differentiable

Hi;

Looks good!

Interesting is that  the function sin( 1 / x ) is not differentiable at 0 and neither is x sin( 1 / x ) but x^2 sin( 1 / x ) is!


In mathematics, you don't understand things. You just get used to them.
I have the result, but I do not yet know how to get it.
All physicists, and a good many quite respectable mathematicians are contemptuous about proof.
 

#3 2013-11-29 20:45:26

Nehushtan
Power Member

Offline

Re: Differentiable

Some corrections.

The Floor and Ceiling Functions are not differentiable, as there is a discontinuity at each jump.

More precisely, they are not differentiable only at integer values of x. (If x is not an integer they are perfectly differentiable at x.)

Similarly the function so y=x(1/3) is only not differentiable at the origin; elsewhere it is differentiable.

The y=1/x and  y=sin(1/x) are not defined at the origin so it makes no sense to ask whether they are differentiable there. To be differentiable at a certain point, the function must first of all be defined there!

And the last part:

But a c̶o̶n̶t̶i̶n̶u̶o̶u̶s̶ ̶f̶u̶n̶c̶t̶i̶o̶n̶ function that is continuous at a certain point might not be differentiable at that point, for example the absolute value function is actually continuous (though not differentiable) at the origin.

Last edited by Nehushtan (2013-11-29 21:49:53)


134 books currently added on Goodreads
 

#4 2013-11-29 22:30:24

MathsIsFun
Administrator

Offline

Re: Differentiable

Thanks bobby and Nehushtan.

May I use some of your wording Nehushtan?


"The physicists defer only to mathematicians, and the mathematicians defer only to God ..."  - Leon M. Lederman
 

#5 2013-11-30 03:22:50

bobbym
Administrator

Online

Re: Differentiable

May I use some of your wording Nehushtan?

I certainly would, JFF could not have said it better.

In post #2 I left out the other part of the function definition. I should have said,



f(x) is differentiable at 0 according to the SE. x^2 sin( 1/ x ) would not be because it is not defined at 0.


In mathematics, you don't understand things. You just get used to them.
I have the result, but I do not yet know how to get it.
All physicists, and a good many quite respectable mathematicians are contemptuous about proof.
 

#6 2013-12-01 00:04:55

bob bundy
Moderator

Offline

Re: Differentiable

hi MathsIsFun

The page looks good to me.  Well done!  smile

Bob


You cannot teach a man anything;  you can only help him find it within himself..........Galileo Galilei
 

Board footer

Powered by FluxBB