Discussion about math, puzzles, games and fun. Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ ¹ ² ³ °
 

You are not logged in. #1 20101207 08:42:58
Trig: deriving multipleangle identities . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . . . . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . . . . . . . . . . . . . Last edited by soroban (20110107 01:51:28) #2 20101207 21:58:21
Re: Trig: deriving multipleangle identitiesNice use of complex nos! #3 20110106 17:05:04
Re: Trig: deriving multipleangle identitiesCan you give derived expression for squares of trigonometric functions such as sin 2θ?Is it solve by the same formula? #4 20110107 01:50:46
Re: Trig: deriving multipleangle identities
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #5 20120707 03:08:57
Re: Trig: deriving multipleangle identitiesHey, this is a really neat method. I've been aware of the deMoivre method but this is definitely much easier! (especially for tangent) Last edited by heliootrope (20120707 03:10:40) 