Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#26 Re: Help Me ! » What is a partial derivative? » 2005-12-02 09:48:27

partial derivative is basically holding one variable constant and differentiating with respect to another variable.  for example: z = 3x + 4y

the partial of z with respect to x is 3 (hold y constant)
the partial of z with respect to y is 4 (hold x constant)

#27 Help Me ! » double integral in polar coordinates » 2005-12-02 09:18:49

Flowers4Carlos
Replies: 1

this should be pretty ez but my dummy head can't figure it out... something must be loose up there.

i need someone to set up the double integral in polar coordinates and explain how they got it.  no need to evaluate it.

find volume of the given solid:

above cone z = (x² + y²)^(1/2)
below sphere x² + y² + z² = 1

#28 Re: Help Me ! » Square roots with Trig identities.. Can anyone help me? :) » 2005-11-14 16:59:24

ahhh... a heart!  yes i recognize those!!  they are the ones that are always fluttering about chris evans. wink

#29 Re: Help Me ! » A question on essays cheating » 2005-11-14 16:37:00

wow!!  12 pages???  that's crazy!!!  i'd be like, UP YOURS TEACHER!!!

#30 Re: Help Me ! » Next number in sequence? » 2005-11-14 16:33:59

the next number will be 901.  if you find the difference between each term, you will observe the pattern 4, 2, 4, 14, 4, 2, 4.

so the next term will be 887 + 14 = 901
and the next term after that will be 901 + 4 = 905

#31 Re: Help Me ! » Compound Interest » 2005-11-14 16:11:09

ohhh... so that's what "total present value" is.  my mistake.

btw... why hasen't n e one said something nice bout my avatar?? u guys don't like it?? sad

#32 Re: Help Me ! » Square roots with Trig identities.. Can anyone help me? :) » 2005-11-14 16:07:45

hi yaz angel!!

what does "<3" in your signature mean???  i see that expression being used a lot lately.

(1+sinθ)^(1/2)      (1+sinθ)
------------------ =  -----------          the left side is easier to work with
(1-sinθ)^(1/2)         |cosθ|

(1+sinθ)^(1/2)
------------------       multiply everything by the "conjugate" of the denominator
(1-sinθ)^(1/2)

(1+sinθ)^(1/2)*(1+sinθ)^(1/2)            (1+sinθ)^(2/2)                 1+sinθ
------------------------------------ = ------------------------------ = ------------------
(1-sinθ)^(1/2)*(1+sinθ)^(1/2)       [(1-sinθ)(1+sinθ)]^(1/2)     (1-sin²θ)^(1/2)

    1+sinθ
------------------     remember the identity   cos²θ = 1-sin²θ
(1-sin²θ)^(1/2)

    1+sinθ                 1+sinθ
------------------ = ----------------   since √a ≥ 0, then √cos²θ > 0 ⇒ |cosθ|
  (cos²θ)^(1/2)      (cosθ)^(2/2)

1+sinθ      1+sinθ   
--------- = ---------
√cos²θ      |cosθ|

#33 Re: Help Me ! » Compound Interest » 2005-11-13 13:27:58

hi yaz nick!!

hmmm... i'm not too sure how to compute compund interest but this is how i would do it:

use the compund interest formula:
A = P(1 + r/n)^(nt)
where t is in years, P is principal invested, and r is annual interest compunded n times per year.

our initial investment (P) is $5000, the interest is r=.06 compunded annually n=1, and t=3 (because we will be receiving more money after three years).  plug these guys into the formula:

5000(1 + .06/1)^(1*3) = 5955.08

after three years, we will receive $5000 more so add that to 5955.08 which gives us 10955.08.  we use the formula again but this time taking P=10955.08 and t=1.

10955.08(1+.06)^(1) = 11612.38

in the fourth year, we will receive an aditional $5000 so the total present value is:
11612.38 + 5000 = 16612.38

#34 Re: Help Me ! » All different types, pythagorus, trig, graphing, ect. » 2005-11-13 10:20:29

wow!!  u've got almost the entire alphabet to do!

what problems do you need help in???  don't say all of them wink

#35 Re: Help Me ! » history of logarithm » 2005-11-07 19:00:48

applying logarithms into a complicated function can make the function much easier.  for example:

y= [x^(3/4)√ (x² + 1)]/(3x + 2)^5

apply log to both sides

lny = 3/4lnx + 1/2lx(x² + 1) - 5ln(3x + 2)

all we gotta do now is add and subtract which is much easier than the original one.

#36 Re: Help Me ! » Rotating a 3d point about a 3d line. » 2005-11-07 18:49:27

are you trying to find the volume by using cylindrical shells?

#37 Re: Help Me ! » more trig help please! » 2005-11-04 15:18:10

hi yaz lloyd!

i can't remember how to do these exactly, but i think it should go something like this:

2tan²θ + 7tanθ = -3

2tan²θ + 7tanθ + 3 = 0

2(tan²θ + 7/2tanθ + 3/2) = 0

2(tanθ + 1/2)(tanθ + 3) = 0

tanθ = -1/2           tanθ = -3
θ = tan-¹(-1/2)      θ = tan-¹(-3)

hmm... i guess u need a calculator to find θ

#38 Re: Help Me ! » really need help!!! » 2005-11-04 15:00:37

hi yaz pman!

hmm... where have all the admins/mods gone to??.

[(4x - x²)/(9 - x²)]/[(8 - 4x)/(3+x)]              use the property: (a/b) / (c/d) = (a/b)(d/c)

(4x - x²)(3 + x)     
-------------------               expand (9 - x²) ---> (3 - x)(3 + x)
(9 - x²)(8 - 4x)

   (4x - x²)(3 + x)
------------------------         (3+x) cancels out
(3 - x)(3 + x)(8 - 4x)

   (4x - x²)
-----------------                  multiply: (3 - x)(8 - 4x) to get: (24 - 20x + 4x²)
(3 - x)(8 - 4x)

  (4x - x²)
-------------------               factor out a 4 in the denominator: (24 - 20x + 4x²) ----> 4(x² - 5x +6)
(24 - 20x + 4x²)

   (4x - x²)
-----------------                 x² - 5x +6 ---> (x - 2)(x - 3)
4(x² - 5x +6)

  (4x - x²)
----------------                  in the numerator, complete the square of (4x - x²) to get: -(x - 2)² + 4
4(x - 2)(x - 3)

-(x - 2)² + 4             -(x - 2)²                       4                   -(x - 2)                  1
------------------ =  ------------ -----   +  ------------------ =  -------------   +   --------------- 
4(x - 2)(x - 3)         4(x - 2)(x - 3)          4(x - 2)(x - 3)        4(x - 3)            (x - 2)(x - 3)

#39 Re: Help Me ! » hey you! ya you!! i've got a question!! » 2005-11-03 06:08:19

hmm... well the book did give one lousy example:

find a vector function that represents the curve of intersection of the cylinder x² + y² = 1 and the plane y + z = 2

answer: the projection of C (curve of intersection) onto the xy plane is the circle x² + y² = 1, z=0.  so we know that we can write
                                     x=cost  y=sint       0≤t≤2pi
from the equation of the plane we have z = 2 - y = 2 - sint

so we can write parametric equations for C as
       x=cost  y=sint  z= 2 - sint     0≤t≤2pi
the corresponding vector equation is
       r(t) = costi + sintj + (2-sint)k     0≤t≤2pi

i hope someone can make sense out of it.

#40 Help Me ! » hey you! ya you!! i've got a question!! » 2005-11-02 16:49:15

Flowers4Carlos
Replies: 1

please help me out on this one!!  i've been looking at the problem for hours now and i can't figure it out sad

find a vector function that represents the curve of intersection of the two surfaces

the cone z = (x² + y²)^(1/2) and the plane z = 1 + y

answer: r(t) = ti + 1/2*(t² - 1)j + 1/2(t² + 1)k

#41 Re: Help Me ! » Mathhelp! » 2005-10-30 09:21:48

hi yaz matilde!!

oh geeez.... this is a tuff one!!  i will still give it a try!!!

∫e^(2x)sin²xdx                            sin²x = 1/2(1 - cos2x)

∫e^(2x)[1/2(1 - cos2x)]dx            let u=2x so du=2dx

1/2∫e^(u)[1/2(1 - cosu)]du

1/4∫e^(u)(1 - cosu)du

1/4∫e^(u)du - 1/4∫e^(u)cosudu

-1/4(∫e^(u)cosudu - ∫e^(u)du)                use integration by parts on ∫e^(u)cosudu
                                                             f(u) = e^(u)          g'(u) = cosu
                                                             f'(u) = e^(u)         g(u) = sinu
                                                            ∫f(u)g'(u)du = f(u)g(u) - ∫g(u)f'(u)du

-1/4[(e^(u)sinu - ∫e^(u)sinudu) - ∫e^(u)du]     use integration by parts on ∫e^(u)sinudu
                                                                     f(u) = e^(u)             g'(u) = sinu
                                                                     f'(u) = e^(u)            g(u) = -cosu

-1/4[{e^(u)sinu - (-e^(u)cosu + ∫e^(u)cosudu)} - ∫e^(u)du]

-1/4[(e^(u)sinu + e^(u)cosu - ∫e^(u)cosudu) - ∫e^(u)du]

observe that ∫e^(u)cosudu = e^(u)sinu + e^(u)cosu - ∫e^(u)cosudu so

∫e^(u)cosudu + ∫e^(u)cosudu = e^(u)sinu + e^(u)cosu
2∫e^(u)cosudu = e^(u)sinu + e^(u)cosu
∫e^(u)cosudu = 1/2(e^(u)sinu + e^(u)cosu)

finally...

-1/4{[1/2(e^(u)sinu + e^(u)cosu)] - e^(u)}

you can plug u=2x back in there if ya want.  i may have done it all wrong or there may be an easier way of doing it wink  who knowns???

#42 Re: Guestbook » boo hoo » 2005-10-28 19:05:21

awwwww... whatever troubles you may have tiger, i will always like you. *huuuuuuuugs*

smile

#43 Re: Help Me ! » A world of Evil General Ability: 10 questions » 2005-10-25 03:21:35

ahhh... thank you mathsisfun the sailor, math, and word person!!!

#44 Re: Help Me ! » A world of Evil General Ability: 10 questions » 2005-10-24 21:02:38

wow these are weird questiosn.... for wut class is this???

1) 8.15

2) 3, 7, 1 6, 12, 2 9, 19, 3 12, 28, 4 15

3)praise

4) i'm not too sure wut antonym means, so i'm gonna guess reveal.

5) again, i dunno wut synonym is, so i'm guessing evil.

6) see below...

7) Sour Grapes

8) 25

9) beguiling

10) see below...

i suggest u use a dictionary for those vocabulary questios.

#45 Re: Help Me ! » basic geometry... » 2005-10-23 17:31:25

is this what your looking for??
http://www.mathsisfun.com/equation_of_line.html

#46 Re: Help Me ! » geometry » 2005-10-23 09:10:12

never fear!!!  Flowers4Carlos is here to save the day!!!!

*looks at the problem*

eeeeek..... *falls down*

#48 Re: Help Me ! » Help! - Function inverse » 2005-10-16 18:35:34

hi yaz lifflander!

y = x² + x                       complete the square to obtain
y = (x + 1/2)² - 1/4
x = (y + 1/2)² - 1/4
x + 1/4 = (y + 1/2)²
±(x + 1/4)½ = y + 1/2     since x≥-1/2    y must be positive
(x + 1/4)½ = y + 1/2
(x + 1/4)½ - 1/2 = y

there ya go!!!  take care buddy!!!

#49 Re: Guestbook » Austraila » 2005-10-16 08:38:36

i feel comforted now. smile

my name comes from my ex, carlos.  he broke up w/ me cuz i wasn't spending nuff time w/ him.  now i'm desperately trying to get back with him.  so when i registered my name i was thinking of him.

hmm... it does sound like the book flowers for algernon.  it's a good book imo!!!

#50 Re: Guestbook » Austraila » 2005-10-15 17:59:21

oh noes... did i just upset someone else by saying "gang"?  this is not my night.  sad

Board footer

Powered by FluxBB