Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#226 Re: Help Me ! » geometric probability ---- squares » 2016-02-10 16:50:53

Related  problem ( I ) :  To  find  the  volume  of  a  polyhedron

Let   X  denotes  a  polyhedron  with  6  vertices  PQRSTU ,
11  sides  and  7  faces :
(1)  base  PQRS  being  a  square  with  sides  1/2  unit .
(2) Δ PTS  with  PT = 1/12 unit ( in  fact  sq.unit)
     where  TP  is  perpendicular  to  the  base .
(3) Δ PTQ  being  congruent  to  Δ PTS  .
(4) Δ RUQ  with  RU = 1/8  unit  ( or  sq.unit )
     where  RU  is  perpendicvlar  to  the  base .
(5) Δ RUS  being  congruent  to  Δ RUQ .
(6) Δ TQU .
(7) Δ TSU  being  congruent  to Δ TQU .       

How  to  find  the  volume  of  X ?

#227 Re: Help Me ! » geometric probability ---- squares » 2016-02-07 15:51:11

Hi  bobbym ,

I  have  to  emphasize  that  not  only  the  bases  ,but  in  fact  all  the  3  sides  of  the  Δs  stay  parallel . Otherwise  if  you  turn  1  of  the  smaller  Δ  by  90 degree  anti-clockwisely ( it  seems  possible ) then  only  2  of  the  3  sides  remain  parallel .

#228 Re: Help Me ! » geometric probability ---- squares » 2016-02-06 16:07:27

Hi  bobbym ,

I  think  that  whenever  A , B  and  E  are  similar  figures ( nomatter  squares , rhombuses  or  Δs )  and  in  parallel  position , and  with  the  same  proportion  of  corresponding 
sides ( i.e.  1/2 ) , the  probability  required  will  remain  the 
same , i.e.  1/3 *  1/3  =  1/9  .

#229 Re: Help Me ! » geometric probability ---- squares » 2016-02-04 15:16:57

Hi  bobbym ,

Since  the  3  Δs  are  similar , the  result  should  be
the  square  of  the  ratio  of  any  1  side  of  the
expectation  of  common  portion  of  A  and  B  with
the  corresponding  side  of  E .

#230 Re: Help Me ! » geometric probability ---- squares » 2016-02-03 15:52:03

Hi  bobbym ,

The  triangles  are  not  necessarily  equilateral , just  any 3  similar
triangles. Any  1  of  the  3  vertices  may  do , just  that  the  triangles  are  parallel .(i.e.  for  all  the  3  corresponding  sides )

#231 Re: Help Me ! » geometric probability ---- squares » 2016-01-31 20:37:43

Now  let  us  consider  triangles :
Inside  a  triangle  E  there  are  2  smaller  similar  triangles
A  and  B , both  with  length  of  relative  sides  being  1/2  of
that  of  E . All  the  3  triangles  are  parallel  with  vertices  upwards .A  and  B  can  move  freely  inside  E , but  must  keep  parallel  with  E .If  a  point  is  chosen  randomly  on  E ,
find  the  probability  that  the  point  lies  inside  A  and  B  at  the  same  time .

#232 Re: Help Me ! » geometric probability ---- squares » 2016-01-27 20:51:49

Hi  bobbym ,

I  mean  that  the  word  " square "  is  replaced  by  " rhombus ",
others  remain  unchanged  in  the  original  post .

#233 Re: Help Me ! » geometric probability ---- squares » 2016-01-26 15:23:26

Thanks  bobbym , you  are  right .

By  formula , we  have  the  probability  of  the  point  lies
within  the  axis  of 1  side ( say  horizontal  side ) of  the
common  portion  of  A  and  B  to  be  1/3 . Similarly ,
for  the  vertical  side , P  also  =  1/3 . Thus  combinely
P  of  the  point  lies  within  both  A  and  B  will  be  1/9 .
Will  the  answer  be  the  same  for  other  polygons , say
rhombus  under  similar  conditions ?

#234 Help Me ! » geometric probability ---- squares » 2016-01-24 15:49:54

mr.wong
Replies: 89

Inside  a  square  E  there  are  2  smaller  squares  A  and  B  ,both with  length  of  sides  being 1/2  of  that  of  E.  Both  squares
can  move  freely  inside  E,  but  must  keep  "parallel " with  E.  If  a point  is  chosen  randomly  on  E , find  the  probability  that  the  point lies  inside  A  and  B  at  the  same  time.

#235 Re: Help Me ! » geometric probability--segments » 2016-01-22 15:51:51

Hi  bobbym ,

The  use  of  function  with  min  and  max  will  save  much labours , for  it  applies  to  every  possible  conditions  but  not  just  certain  conditions .
I  pay  respect  to  your  favour  and  hard  works , but    time  and  spirit  should  be  spent  on  the  right  place .
Later  I  shall  discuss  some  related  topics  in  a  new  thread .

#236 Re: Help Me ! » geometric probability--segments » 2016-01-22 15:48:01

Hi  Relentless ,

Thanks  for  your  reply !  Though  your  formula  is  valid
for  x=a=b=2/5 , but  if  you  substitute  x=a=b  by  3/5   ,
you  will  get  a  not  so  correct  result  9/20  instead  of
7/15 .

#237 Re: Help Me ! » geometric probability--segments » 2016-01-20 14:14:51

Hi  bobbym ,

Your  second  formula  is  too  complicated  , I  can't   even
check  its  validity  for  a = b =  2/5 .
Don't  spend  time  on  your  formula  anymore !  Just  use
my  formula  for  further  investigation  if  you  have  checked  its  validity .

#238 Re: Help Me ! » geometric probability--segments » 2016-01-18 15:28:36

Hi  bobbym ,

For  example  , let  a = b = 1/10 , then  your  formula  will  get

P = ( 1/100 - 2/10 +  3/100 - 3/10 + 1 ) / ( - 27/10 )

    = [( 1 +3 +100 - 20 - 30 ) / 100 ] / ( -27/10 )

    =  ( 54/100 ) *( - 10 / 27 )

    =  - 1/ 5

Another  example  , let  a = b = 2/5 ,

my  formula  yields   P = 28/135
while  your  formula  yields  P = 1/5 = 27/135 ;
which  one  is  more  correct ?

#239 Re: Help Me ! » geometric probability--segments » 2016-01-16 15:54:35

Hi  bobbym ,

I  think  your  formula  may  be  correct    for  certain  limited  cases , but  not  always . Also  the  formula  should  be  symmetric  for  a  and  b .
Moreover , if  both  a  and  b  are  small  enough , the formula  may  yield  a  negative  value !

#240 Re: Help Me ! » geometric probability--segments » 2016-01-14 21:48:00

Hi  bobbym ,

I  recognize  that  I  can't  derive  a  formula  for  3  segments  from  your  data .

The  following  is  the  problem  involving  2  smaller  segments  and  it's  formula  .

Problem :

Inside  a  segment  E ( with  length  being  1  unit ) there  are  2  smaller  segments  A  and
B  ( with respective  lengths   a  and  b  units  , where  0≦ a ≦ 1   and  0 ≦ b ≦ 1)  which  slide  freely  along  E .
(1) Find  the  expectation  of  the  length  of  common  portion  of  A  and  B .
(2) If  a  point  is  chosen  randomly  on  E , find  the  probability  that  the  point  lies
      within  the  common  portion  of  A  and  B .

Formula  for  (1) : 
min ( a,b ) -   [ min ( 1-a, 1-b )^3 - max ( 0, 1-a-b )^3 ] / 3(1-a)(1-b)  unit
where  min  denotes  the  smallest  value  while  max  denotes  the  greatest  value .

By  dividing  the  expression  by  1  unit , we  get  the  answer  of (2)  readily .

( Welcome  to  check  the  validity  of  the  formula  by  computer .)

#241 Re: Help Me ! » geometric probability--segments » 2016-01-11 17:03:46

Hi  bobbym ,

Thank  you  very  much  for  your  hard  working , but  don't  spend  too  much  spirit  by  your  way , it  does  not  worth !
Please  share  some  original  data  with  me ! I  can  do  it  much  more  concisely since  I  already  have  a  formula  for  2  smaller  segments .
I need  time  to  analyse  your  formula , but  what  can  I  do  will  be  limited  unless  I  have  enough  original  data  in  hand .

#242 Re: Help Me ! » geometric probability--segments » 2015-12-28 21:23:03

Hi  bobbym ,

Yes , that's  what  I  want . Can  you  give  a  help ?

#243 Re: Help Me ! » geometric probability--segments » 2015-12-27 15:07:53

In  fact  I  am  more  interested  to find  a  formula  for  problems  involving  3  smaller  segments  with  their  individual  lengths  other  than  1/2  with  respect  to  e ( length  of  E ) .
Let  P ( a, b, c )  denotes   the  probability ( estimated ) of  a  point  chosen  in  E  lies  within  A ,B , and  C with their lengths  being  a, b, and c  respectively ,( where  a , b, and  c may  be  values  other  than  1/2 , say  from  1/10  to  9/10 ,for  various  a,b, and c , i.e. their  values   may  be  different  .)
If  I  can  obtain  enough such data  of  P ( a, b, c)  ,perhaps  I  can  guess  a  general  formula  for  it .

#244 Re: Help Me ! » geometric probability--segments » 2015-12-24 16:58:04

Hi bobbym ,


The  2  problems  look  like quite  similar but  in  fact  they are  quite  different . In  that  problem  the  probability of  the  last  hit  depends on  the  result  of  the  previous  throws , but  in  my  problem  the  probability  of  the point  lies within  each  segment  is  fixed  .( Each  segment  has  same  length .) Moreover , in  that  problem n  has  to  start  from  3  but  in  mine  n  can  be  started  from  1 .
However , I  am  amazed  that  the  results  of  them  will  be  exactly  the  same  if  one  of  them  is  shifted
by  2  positions .

#245 Re: Help Me ! » geometric probability--segments » 2015-12-21 16:38:25

Assume that the formula  P(n)= 1/n+1  is true, then it can further be generalized .

Let  P(n,r) denotes the probability that the point lies within exactly  r  smaller segments out of the  n ,(where r varies  from  0  to  n ) then  P(n,r) ≡ 1/n+1 ,i.e. no matter what is the value of  r , P(n,r) always = 1/n+1 .
Since there are  nCr  items  for each  r , if their total  P  sum up to  1/n+1 ,then  P  of each item will be 1/[(n+1)(nCr )]. ( The  total no. of various items will be  nC0 + nC1 + nC2 + ........+nCn  =  2 ^ n .)
E.g. ,let  n = 3,
for  r = 0, there is only 1 such item,( neither  A nor B nor C ) and P(3,0) = 1/4;
for  r = 1, P(3,1) also = 1/4 ,since there are  3C1 = 3 such items ,( either  A  or  B  or C ),thus each item will get
                 P = 1/4 * 1/3 = 1/12 ;
for  r  = 2, P(3,2) also = 1/4 , since there are 3C2 = 3 such items ,( either  A with B ,or A with C , or B with C ),
                 thus each item will get  P = 1/12  also ;
for  r = 3, there is only 1 such item ( A with B with C ) and  P (3,3) = 1/4 .

#246 Re: Help Me ! » geometric probability--segments » 2015-12-09 17:06:04

Hi ! bobbym

I think I am unable to prove the formula. I cannot even deduce  P(2) to P(3),that's why I got a wrong answer for P(3).
However,somebody can solve P(3) by multiple integration and get a correct answer. Thus the formula may be proved by mathematical induction with assistance of multiple integration.

#247 Re: Help Me ! » geometric probability--segments » 2015-12-08 20:43:57

Much thanks to bobbym !

Previously I had never thought there may be such a relation between  n  and  P. I will try to
prove that formula by mathematical induction .

#248 Re: Help Me ! » geometric probability--segments » 2015-12-07 15:05:39

Thanks again bobbym!

Now let  n  denotes the no. of smaller segments inside E( each with length being 1/2 of E). For n=1, surely P  = 1/2 ; for n=2, we get P= 1/3 ; for n=3, you get P=1/4 ; for n=4, will you guess P= 1/5  and so on ?

#249 Re: Help Me ! » geometric probability--segments » 2015-12-06 15:06:48

Thank you very much bobbym !  I am looking to find why the 2nd answer is incorrect.

If there are only 2 smaller segments ( say A and B only) inside E,will you get  P= 1/3 ?

#250 Help Me ! » geometric probability--segments » 2015-12-05 20:50:56

mr.wong
Replies: 81

Inside a segment E there are 3 segments A, B, and C which move freely along E, and all with lengths being 1/2 of E. If a point is chosen randomly on E, find the probability that the point lies within A, B, and C at the same time.

There are 2 possible answers to this problem:
(1)1/4
(2) about 1/5
I am not sure which one is correct,can the correct answer be verified by using computer?

Board footer

Powered by FluxBB