You are not logged in.
Guess 2: 1973
For naw everything is OK. Everybody except me have guessed their color right.
Well done, Ricky!
Your proof is very good.
And I haven't beated you because you was able to give another good proof.
Oops...
Just ArcCos[Sin[x]] makes square.
Sq[x] is periodic with period Pi.
I've started making some pictures.
If ArcCos[Sin[ArcCos[Sin[x]]]] = Sq[x] then I found interesting property:
Sq[Sq[x]]=Sq[x]!
This thing is very amasing for me.
t∈[0, π]
x=ArcSin[Cos[t]]
y=ArcCos[Sin[t]]
What is the graphic plot of this parametric sequence?
Yes, this is a square!
And the function
y = ArcCos[Sin[ArcCos[Sin[x]]]]
is half square!
...Interesting...
Also it may be something from the group theory, I guess.
And for my problem:I prooved that ther there isn't third number. That means that for number k greater than 6 there exist prime number p that is not from the form ik +- 1.
And for the Ricky's suggest that √2 is not even rational. Here's interesting theorem:
Let Q is the multitude of all numbers of the type a/b , a,b ∈ N (naturals)
Let R is the multitude of all numbers of the type a√b (b^(1/a)) , a,b ∈ N (naturals)
Then Q && R = N.
That means that every a√b that is not natural is not rational and every a/b that is not natural is not a root of an integer number.
The the remainder of the sum of every two consecutive numbers when it's divided by 4 must be 0 or 1.
Here are some analisys that may be helpful:
We have n numbers between 1 and n. Their sum is n(n+1)/2.
Every two consecutive numbers make a perfect square. The sum of all perfect squares is 2n(n+1)/2=n(n+1)
so n(n+1) must be sum of n squares greater than 1.
2^10000 = 199506311688075838488374216268358508382349683188619245485200894985294388302219\
466319199616840361945978993311294232091242715564913494137811175937859320963239\
578557300467937945267652465512660598955205500869181933115425086084606181046855\
090748660896248880904898948380092539416332578506215683094739025569123880652250\
966438744410467598716269854532228685381616943157756296407628368807607322285350\
916414761839563814589694638994108409605362678210646214273333940365255656495306\
031426802349694003359343166514592977732796657756061725820314079941981796073782\
456837622800373028854872519008344645814546505579296014148339216157345881392570\
953797691192778008269577356744441230620187578363255027283237892707103738028663\
930314281332414016241956716905740614196543423246388012488561473052074319922596\
117962501309928602417083408076059323201612684922884962558413128440615367389514\
871142563151110897455142033138202029316409575964647560104058458415660720449628\
670165150619206310041864222759086709005746064178569519114560550682512504060075\
198422618980592371180544447880729063952425483392219827074044731623767608466130\
337787060398034131971334936546227005631699374555082417809728109832913144035718\
775247685098572769379264332215993998768866608083688378380276432827751722736575\
727447841122943897338108616074232532919748131201976041782819656974758981645312\
584341359598627841301281854062834766490886905210475808826158239619857701224070\
443305830758690393196046034049731565832086721059133009037528234155397453943977\
152574552905102123109473216107534748257407752739863482984983407569379556466386\
218745694992790165721037013644331358172143117913982229838458473344402709641828\
510050729277483645505786345011008529878123894739286995408343461588070439591189\
858151457791771436196987281314594837832020814749821718580113890712282509058268\
174362205774759214176537156877256149045829049924610286300815355833081301019876\
758562343435389554091756234008448875261626435686488335194637203772932400944562\
469232543504006780272738377553764067268986362410374914109667185570507590981002\
467898801782719259533812824219540283027594084489550146766683896979968862416363\
133763939033734558014076367418777110553842257394991101864682196965816514851304\
942223699477147630691554682176828762003627772577237813653316111968112807926694\
818872012986436607685516398605346022978715575179473852463694469230878942659482\
170080511203223654962881690357391213683383935917564187338505109702716139154395\
909915981546544173363116569360311222499379699992267817323580231118626445752991\
357581750081998392362846152498810889602322443621737716180863570154684840586223\
297928538756234865564405369626220189635710288123615675125433383032700290976686\
505685571575055167275188991941297113376901499161813151715440077286505731895574\
509203301853048471138183154073240533190384620840364217637039115506397890007428\
536721962809034779745333204683687958685802379522186291200807428195513179481576\
244482985184615097048880272747215746881315947504097321150804981904558034168269\
49787141316063210686391511681774304792596709376. It has exactly 3011 digits.
what means that the sum is perfect square?
Here's plot of the function Prime[i+1]-Prime[i] up to 1000.
Actually, it's Prime[Floor[i+1]]-Prime[Floor[i]]
What he actually did was a nice theory about Riemann maps and Bergman kernels!
Chaotic is absolutely right!
Why? PunBB is not sssssssso bad.
Hello.
And here is the place were you can get all the help you need.
But it won't work in all ways: It can bring to something like that:
If you are able to reduce your limit to sum of non-multiple limits you can find them and then you can sumarize them.