Math Is Fun Forum

  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

You are not logged in.

#326 Re: Jai Ganesh's Puzzles » Algebra » 2020-06-20 01:05:30

2x^2 -6x -x +3 = 0
2x(x-3) -1(x-3) = 0
(2x-1) ( x-3) = 0
x = 1/2   or   x= 3

#327 Re: Help Me ! » Determinants » 2020-06-19 21:59:55

no, i understood them clearly, please explain what is determinants ?and for inverse of matrices using row operations please post some questions of finding inverses of 3by3 matrices and i will post answers on matrices thread?

#328 Help Me ! » Determinants » 2020-06-19 19:53:55

666 bro
Replies: 3

What does the determinant of square matrix mean and how it works?

#329 Re: Jai Ganesh's Puzzles » Coordinate Geometry » 2020-06-19 02:37:27

Let the line joining points will be AB, where
A=(-3,10)
B=(6,-8)
let the coordinates of the mid point(m) will be =m(x,y)
now, midpoint of AB(m) =
using midpoint formula   (m(x,y)) =   (  (x₁+x₂)/2 , (y₁+y₂)/2  ) , we get
                                                            =  (   (-3+6)/2 , ( 10-8)/2  )
                                           m(x,y)      =   ( 3/2 , 1 )
                     ∴   the coordinates of the midpoint (m) =  ( 3/2 , 1)

#330 Re: Jai Ganesh's Puzzles » Algebra » 2020-06-19 01:48:00

( x+(1/2) ) ( x-(1/4) )=0

x=1/4     or   x= -1/2

#331 Re: Jai Ganesh's Puzzles » Coordinate Geometry » 2020-06-18 02:02:21

let the vertices of the triangle be labeled as A,B and C where
A =(8,-4)
B= (9,5)
and C=(0,4)
now ,distance of AB =
   using distance formula  = √( (x₂-x₁))^(2)+( (y₂-y₁) )^(2) )⃗, we get
                                               =√(  (9-8)^(2) )+(5+4)^(2) )
                                                =√(82) units.

distance of BC   =    √( (0-9)^(2)+(4-5)^(2) )
                             =  √(82) units

distance of AC    =   √( (8-0)^(2)+(4+4)^(2) )
                              =  (8√(2)) units

∴   distance of ab = distance of bc = √(82) units
     ∆ABC is an isosceles triangle.

#332 Re: Jai Ganesh's Puzzles » Algebra » 2020-06-18 00:59:38

Solution for A#80 is (xy+4z)(xy-4z)((xy)^2 +(4z)^2))

#334 Re: Jai Ganesh's Puzzles » Algebra » 2020-06-16 19:23:32

Solution A#79 the value of k=-3

#335 Computer Math » Programming vs algorithm » 2020-06-16 14:16:04

666 bro
Replies: 6

How programming is different from algorithms?

#336 Re: Jai Ganesh's Puzzles » Coordinate Geometry » 2020-06-16 02:01:24

CG#95. ∴ the ratio is 2:1 and the value of p =(2/3)

#337 Re: Jai Ganesh's Puzzles » Algebra » 2020-06-16 01:48:37

Solution A#78 the values are k=1 or k=(1/16)

#340 Re: Help Me ! » Matrices » 2020-06-12 16:09:57

This is what I know about a inverse of matrices using row operations. please ask me questions to challenge my understanding?

#341 Re: Jai Ganesh's Puzzles » *** Problems » 2020-06-10 02:32:02

Solution of #331: The values are
a=-13
b= 8

#342 Re: Euler Avenue » Self learning maths » 2020-06-08 22:46:34

Are there any mathematicians who were struggled in learning some area of maths?

#343 Re: Help Me ! » Matrices » 2020-06-08 02:02:24

Why does the method of finding inverse operations using elementary operations looks so hard and what should I do to reduce the mistakes while doing this method? Especially for  3x3 matrices?

#344 Re: Help Me ! » Matrices » 2020-06-06 18:17:22

how to find inverse of matrix  using elementary operations of an matrix and without using determinants?

#345 Re: Help Me ! » Matrices » 2020-06-05 16:58:47

Would you please explain the following topics:
(1) elementary operations(transformations) of a matrix
(2) invertible matrices, inverse of a matrix by elementary operations

#346 Re: Exercises » Compute the solution: » 2020-06-04 18:39:22

Solution for # 675 is x= - √2 ,  x= -(5/√2)

#347 Re: Help Me ! » Matrices » 2020-05-26 22:06:48

If A and B are symmetric matrices of same order(nxn) then how could ( AB-BA) be an skew symmetric matrix?, please explain with an example?

#348 Re: Help Me ! » Matrices » 2020-05-25 23:23:38

Generally how would we express the given arbitary matrix as the sum of symmetric and skew symmetric matrix?

#349 Re: Jai Ganesh's Puzzles » *** Problems » 2020-05-25 20:37:19

The solution for #262 is -(a+nd).

#350 Re: Help Me ! » Matrices » 2020-05-22 12:54:17

What does the transpose of a matrix mean and how it could be visually seen?

Board footer

Powered by FluxBB