Discussion about math, puzzles, games and fun. Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ π -¹ ² ³ °

You are not logged in.

- Topics: Active | Unanswered

If you do the long division you get:

2a-1 with the remainder 4

so the answer is 2a-1+4/(a+2)

If L=lighthouse height, C=cliff height, and x=distance from ship to cliff and lighthouse

tan31=(L+C)/x and

tan26=C/x solve for x in this one

x=C/tan26 plug this into first equation

tan31=[(L+C)tan26]/C

Ctan31=Ltan26+Ctan26

Ltan26=C(tan31-tan26)

C=Ltan26/(tan31-tan26)

C=107.78m

So your answer seems good. The above is just how the problem struck me. I just noted the two ratios and used two equations with two unknowns. It seemed pretty straightforward. You did the same thing which worked out fine. The only thing that I did different was to not calculate any values until the very end, because I didn't need them until then to solve for the height of the cliff. (I do this a lot because it keeps small rounding errors from getting very large in problems with many steps.)

Oh, and now we know how far the ship is from the lighthouse too...LOL

x=C/tan26 or more precisely because C was rounded

x=L/(tan31-tan26)

x=220.99m

A variable is just that. It is a symbol to represent any value that is possible within the context it is used as long as mathematical rules are adhered to. You can and often do know the entire range of values possible for a given variable but use it as shorthand for all of those values. Can you imagine listing all the values instead of just x for an equation? In many cases you could not do so. For example:

y=2x perhaps the simplest of terms you will ever come across.

Well, x (and y for that matter) can take on any value. It would be impossible to list every possibility if you had an eternity. But what is powerful about variables is that an infinite number of terms can be expressed by the simple relationship demonstrated by the variables. And more times than not, that is what is really at the heart of all mathematics, logical symbolic relationships among abstract things.

I don't know if any of this helps, but a variable in simplest terms is a symbol that is used to look at mathematical relationships without having to actually assign a specific value at the time you are studying the relationship. It is treated mathematically like any other value, but one need not assign a specific value to it until necessary.

or...

A = s²/(4tan[180/n]) where s is length of side and n is number of sides (for those who don't want to use pi to calculate the area of a polygon)

Well that is more physics than math

Here is the formula you will be using to solve the question:

Ft=p; F=force, t=time, p=momentum or mv (mass times velocity)

* note that we will really be talking about average Force during the collision and the change in momentum over that time period (impulse)

Ft=mv=p

F=p/t

The v (velocity) just before impact and just after impact needs to be found first.

Veloctiy at impact is found by using:

Now to find the velocity just after leaving the ground

Finding delta v and multiplying this to the mass will give us the p we were looking for:

Plugging p into our origianl impluse equation

This is the average force that occurs during contact with the ground.

Hope that helps.

C(f) = (f - 32)(5/9) = (5f - 160)/9;

F(c) = (9c/5) + 32 = (9c + 160)/5;

K(c) = 273.15 + C;

K(f) = (2297.9 + 5f)/9;

Here goes the solutions, I will hide them for those who wish to solve them on their own.

The "bonus" is easier.

As y varies from 1 to ∞ x varies from 1 to 0. But we never integrate in the negative direction, so your translated function now one of f(x) would need to be integrated from 0 to 1.

Okay, I too have no idea how they came up with that function, so uh er, I guess that I can't help you either. Sorry.

**irspow**- Replies: 6

What is the maximum number of 1" spheres that will fit completely within a 24" cube?

As a bonus, what is the percentage of empty volume within this maximized arrangement?

I have found one possible solution although there would be many others along the same lines.

First for the conditions that I used. I arbitrarily chose a distance of 4r to exist between any two glasses' geometric centers. Then I allow the height of the glasses to vary to make this true.

Place two glasses standing up 4r apart. Next, lay a glass on its side touching the two standing ones. Repeat second step again on the opposite side of the standing glasses.

No proof is needed to show that the standing glasses are 4r apart. Also the glasses lying on their sides are 4r apart because they are spaced only by the diameter of the standing glasses and their radii.

Now we let the height vary to accomodate this distance.

Overhead it can be seen that centers along the plane of the table from one lying glass to one standing glass form a triangle two equal sides of 2r. Thus the base of our vertical triangle will be r√8.

The side of our vertical triangle will be (h/2 - r). So the hypotenuse of this triangle will be;

d = distance between geometric centers of lying to standing glass

d = √(8r² + h²/4 + r² - hr);

We want d = 4r;

4r = √(9r² + h²/4 - hr);

4r = (1/2)√(36r² + h² - 4hr);

8r = √(36r² + h² - 4hr);

64r² = 36r² + h² - 4hr;

-h² + 4hr + 28r² = 0;

h = [-4r ± √(16r² + 112 r²)] / -2;

h = [-4r ± √(128r²)] / -2;

h = [-4r ± 4r√8] / -2;

Since h must be positive;

h = (-4r - 4r√8) / -2;

h = [-4r( 1+√8)] / -2;

h = 2r(1 + √8);

So this is just one particular case. If the dimensions of the glasses and the space wanted were known then a solution could be calculated in a similar manner.

Welcome landon! Feel free to stay awhile. It only gets better the more you look around.

If you remember that a cm³ = mL it is more simple.

80g/50ml(1000ml) = 1600g

MathsIsFun, they seem very accessible to me. I could only comment on things to add, but you stated above that you plan on doing such anyway. I would suggest that before you move to more complicated material in algebra, a little chat on order of operations would be critical. We tend to follow those rules without thought at this point in our lives, but for those new to algebra it is paramount to know them.

Order of operations popped into my head while reading the pages because they weren't needed. Anyway, I thought then that it would not be so apparent to a newcomer and also low on our natural list of things to explain. (Because we usually don't really think about it anymore.)

**real** problems I was having with the solution and nothing more. I will admit it is a little bit of a pet-peeve of mine that velocities are vectors and rarely treated as such. I guess it's my physics background. All I could think about for k+98 was all of the other real considerations that would be needed to solve such a problem in real life versus the friction free, force free, instantaneous velocity, infinite acceleration capable trains in question. Please excuse me for these faults, I meant no harm.

Comrade Stalin is long dead thank God. Hopefully, sometime soon, the rest of the idiots who believe in the garbage he spouted will be rotting along side of him. Sadly, there are far too many still alive in my home country. Which makes me wonder why we even teach history in school if no one is going to learn anything from it anyway.

edit*

Not that Stalin was the **first** idiot not to understand human nature. I personally think that Plato is the first identifiable idiot to spout communist/socialist drivel. "The Republic" is still circulating around the "intellectual" circuit to great applause. Their ideas didn't work then, they don't work now, and they never will work as long as we remain human beings.

Some pompous megalomaniac always seems to come along and try it again though.