Math Is Fun Forum
  Discussion about math, puzzles, games and fun.   Useful symbols: ÷ × ½ √ ∞ ≠ ≤ ≥ ≈ ⇒ ± ∈ Δ θ ∴ ∑ ∫ • π ƒ -¹ ² ³ °

Login

Username

Password

Not registered yet?

Post a reply

Go back

Write your message and submit
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool: | :dizzy :eek :kiss :roflol :rolleyes :shame :down :up :touched :sleep :wave :swear :tongue :what :faint :dunno
Options

Go back

Topic review (newest first)

bobbym
2013-03-22 19:55:36

Hi;

Do you have a counter-example?

liu
2013-03-22 19:44:28

vixra .org /abs /1301 .0129
goldbach conjecture is false

Ricky
2006-08-03 12:03:52

I'm telling you, they have everything.  The best was Steven Colbert.  He has a satirical news show on Comedy Central, the Colbert Report (you don't pronounce either 't').  On his show last night, he said in the intro in which he summarizes what will be in the show, "Then I give a report on wikipedia.  You can read about it on wikipedia in 10 minutes."

He then went on saying that on wikipedia, you can make things "fact" as long as enough people agree with what you write.  So he suggested making it a "fact" that the number of elephants had increased in the pass 6 months.  Sure enough, in about 30 seconds (I had my computer handy), the elephants page said ath the top:

THE NUMBER OF ELEPHANTS HAS TRIPLED IN THE LAST SIX MONTHS!

Later (possibly now), the article was tagged:

(Protected Elephant: Colbert)

MathsIsFun
2006-08-03 09:10:04

Good find, Ricky! My favorite store name from the Simpsons is the "Try-n-Save".

OMG, They have individual pages for Simpson's episode!: http://en.wikipedia.org/wiki/Marge_Be_Not_Proud

(But we seem to be off the topic of the Riemann hypothesis ...)

Ricky
2006-08-03 08:44:49

But give them time.  As soon as they are done making articles such as Fictional Brands in South Park, I'm sure they'll go back to touch up the important ones dizzy

MathsIsFun
2006-08-03 07:32:43

Ricky wrote:

Wikipedia provides great reference for information.  But it really only makes sense once you understand the topic.  Don't get me wrong, it may help.  But you are better off looking for a book or site which is meant to teach.

I agree - and I think it is a problem for Wikipedia. I have noticed articles that were simple and useful become more and more like something only a researcher would read.

(So "Help Me!" will still be useful!)

krassi_holmz
2006-08-03 04:02:41

Ricky wrote:

Wikipedia provides great reference for information.  But it really only makes sense once you understand the topic.  Don't get me wrong, it may help.  But you are better off looking for a book or site which is meant to teach.

Yes. You're right.
I like wikipedia, because i understand most of what i need.
someone may not.

Ricky
2006-08-03 03:25:17

Wikipedia provides great reference for information.  But it really only makes sense once you understand the topic.  Don't get me wrong, it may help.  But you are better off looking for a book or site which is meant to teach.

Patrick
2006-08-03 02:45:30

Unless you're from china hmm (not that I am)

krassi_holmz
2006-08-03 02:32:23

And I think Wikipedia is a place where you can understand complicated maths.
If you don't know something (or don't understand it), there a great chance to understand it using Wiki.
Here's a wiki link for the riemann hyp:
http://en.wikipedia.org/wiki/Riemann_hypothesis

krassi_holmz
2006-08-03 02:26:33

Ricky wrote:

1.  Prove that if a divides c and b divides c, then ab divides c.

4|16 && 8|16 ,but 32 !| 16.
It's :
(a|c && b|c) =>gcd(a,b)|c.

For seven:
The topic is interesting. I think you're brave for posting it. I was not able to read your first posts, because they are DELETED!!! sad

You were asking for a statement, which cannot be proved with some set of axioms and which is true.
Here you're wrong. The "validality" of an statement depends on the set of axioms. There don't exist an universally true statemet, which is true for every set of axioms. So, if an statement A is unprovable over a set of axioms {X,Y,...,Z}, we can assume that it's true or it's false. If we assume that it's true, we are getting the new system: {X,Y,...,Z,A}, in which the statement is provable to be true.
But if we assume that A is false, over the set {X,Y,...,Z,!A}, A is provable to be false.

I hope you to understand.

Patrick
2006-08-03 00:12:05

oh yeah ricky, didnt think about that :p

MathsIsFun
2006-08-02 17:17:28

I am not sure if anyone give this reference to the Millenium Problems: http://www.claymath.org/millennium/

MathsIsFun
2006-08-02 09:24:05

Hello Oliver!

se7en
2006-08-02 06:23:02

My real name is Oliver Elkington.

Board footer

Powered by FluxBB