Math Is Fun Forum
  Discussion about math, puzzles, games and fun.   Useful symbols: √ ∞ ≠ ≤ ≥ ≈ ⇒ ∈ Δ θ ∴ ∑ ∫ π -

Login

Username

Password

Not registered yet?

Post a reply

Go back

Write your message and submit
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool: | :dizzy :eek :kiss :roflol :rolleyes :shame :down :up :touched :sleep :wave :swear :tongue :what :faint :dunno
Options

Go back

Topic review (newest first)

George,Y
2006-04-07 10:44:25

Sorry you may not find these properties in your text book
|a  b  c|  |a  b' c|    |a  b+b'  c|
|d  e  f|+|d  e'  f| = |d  e+e'  f|
|g  h  i|   |g  h'  i|     |g  h+h'  i|
see the bottom of this link


other properties used
|

| = k|
|
|
|= - |
| = |
|

Vandermonde Determinant
 
this link

George,Y
2006-04-05 16:05:07

Reread the determinant properties, and then you will understand
|column1 column2 column3a+column3b|
=|column1 column2 column3a|+|column1 column2 column3b|

RauLiTo
2006-04-05 02:47:02

thank you very much ... but unfortunately i dind't understand it well ... can someone explain it for me ? !

George,Y
2006-04-05 00:56:56

decompenent the last colume, and reform
| X   X   1 +X |                |1  X   X |      |1  X   X|
| Y   Y   1+Y   | = -1(- 1)| 1  Y   Y | +XYZ| 1  Y   Y| = (1+XYZ)VD 
| Z   Z   1+Z  |                |1  Z   Z |         | 1  Z   Z |

VD -Vander monde Determinant
if x≠ y≠ z
xyz=-1

RauLiTo
2006-04-05 00:07:24

| X   X   1 +X |
| Y   Y   1+Y   | = 0             
| Z   Z   1+Z  |

that was given ...

prove that X Y Z = -1

help please guys i have an exam tomorrow neutral

Board footer

Powered by FluxBB