Math Is Fun Forum
  Discussion about math, puzzles, games and fun.   Useful symbols: √ ∞ ≠ ≤ ≥ ≈ ⇒ ∈ Δ θ ∴ ∑ ∫ π -

Login

Username

Password

Not registered yet?

Post a reply

Go back

Write your message and submit
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool: | :dizzy :eek :kiss :roflol :rolleyes :shame :down :up :touched :sleep :wave :swear :tongue :what :faint :dunno
Options

Go back

Topic review (newest first)

Ricky
2006-03-06 11:55:23

ax + (1-a)y > ay + (1-a)y = y(a + 1 - a) = y
ax + (1-a)y > y

All that needed was x > y.

razor
2006-03-06 09:54:30

We have the real  positive(only) numbers space of dimension n.We have also a relation of two members(sorry),continuous,absoletuly monotonic(only >),cursive,in this space.
Also x,y are arrays and x>y in this space and 0<a<1.
How can we proove that  a*x+(1-a)*y>y ?.   (*:  multiplication)

(G. Aliprantis, D. Brown and O. Burhinshaw, Existence and Optimality of Competitive Equilibrium, Springer-Verlag, 1990.)

sorry for my english.

Board footer

Powered by FluxBB