1. Let A = (1,2), B = (0,1), and C = (5,0). There exists a point Q and a constant k such that for any point P, PA^2 + PB^2 + PC^2 = 3PQ^2 + k. Find the point Q and the constant k. What is the significance of point Q with respect to triangle ABC?

2. In triangle ABC, AB = AC, D is the midpoint of \overline{BC}, E is the foot of the perpendicular from D to \overline{AC}, and F is the midpoint of \overline{DE}. Prove that \overline{AF} is perpendicular to \overline{BE}.