Math Is Fun Forum
  Discussion about math, puzzles, games and fun.   Useful symbols: √ ∞ ≠ ≤ ≥ ≈ ⇒ ∈ Δ θ ∴ ∑ ∫ π -

Login

Username

Password

Not registered yet?

Post a reply

Go back

Write your message and submit
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool: | :dizzy :eek :kiss :roflol :rolleyes :shame :down :up :touched :sleep :wave :swear :tongue :what :faint :dunno
Options

Go back

Topic review (newest first)

bobbym
2013-06-17 21:14:04

{{a, b, c,   d}}
{{5, 7, 17, 19}},
{{5, 7, 19, 47}},
{{5, 7, 29, 67}},
{{5, 7, 31, 71}},
{{5, 7, 41, 61}},
{{5, 7, 61, 71}},
{{5, 11, 13, 43}},
{{5, 11, 31, 37}},
{{5, 11, 31, 67}},
{{5, 13, 19, 29}},
{{5, 13, 23, 43}},
{{5, 13, 23, 61}},
{{5, 13, 41, 43}},
{{5, 13, 43, 53}},
{{5, 17, 19, 37}},
{{5, 17, 31, 61}},
{{5, 19, 37, 47}},
{{5, 23, 31, 43}},
{{5, 23, 43, 61}},
{{5, 31, 37, 71}},
{{5, 31, 43, 53}},
{{5, 31, 47, 61}},
{{5, 31, 61, 71}},
{{5, 37, 41, 61}},
{{5, 37, 59, 67}},
{{7, 11, 13, 23}},
{{7, 11, 19, 41}},
{{7, 11, 19, 53}},
{{7, 11, 19, 71}},
{{7, 11, 29, 43}},
{{7, 11, 29, 61}},
{{7, 11, 41, 61}},
{{7, 11, 43, 53}},
{{7, 13, 17, 23}},
{{7, 13, 17, 59}},
{{7, 13, 23, 53}},
{{7, 13, 41, 53}},
{{7, 13, 41, 59}},
{{7, 13, 47, 53}},
{{7, 17, 19, 47}},
{{7, 17, 23, 43}},
{{7, 17, 29, 37}},
{{7, 17, 29, 43}},
{{7, 17, 37, 59}},
{{7, 17, 43, 47}},
{{7, 19, 41, 53}},
{{7, 23, 29, 31}},
{{7, 23, 29, 37}},
{{7, 23, 31, 59}},
{{7, 23, 37, 53}},
{{7, 29, 31, 71}},
{{7, 29, 53, 67}},
{{7, 31, 41, 59}},
{{7, 43, 47, 59}},
{{7, 59, 61, 71}},
{{11, 13, 17, 43}},
{{11, 13, 19, 29}},
{{11, 13, 23, 37}},
{{11, 13, 37, 59}},
{{11, 13, 43, 47}},
{{11, 17, 19, 31}},
{{11, 17, 19, 43}},
{{11, 17, 31, 61}},
{{11, 19, 23, 37}},
{{11, 19, 23, 67}},
{{11, 19, 29, 31}},
{{11, 19, 31, 59}},
{{11, 19, 37, 41}},
{{11, 19, 37, 53}},
{{11, 19, 53, 67}},
{{11, 19, 67, 71}},
{{11, 29, 31, 67}},
{{11, 29, 61, 67}},
{{11, 31, 37, 41}},
{{11, 31, 37, 59}},
{{11, 31, 59, 61}},
{{11, 31, 59, 67}},
{{11, 37, 41, 61}},
{{11, 37, 59, 61}},
{{13, 17, 23, 31}},
{{13, 17, 23, 43}},
{{13, 17, 23, 67}},
{{13, 17, 29, 37}},
{{13, 17, 29, 67}},
{{13, 17, 31, 53}},
{{13, 17, 31, 59}},
{{13, 17, 37, 53}},
{{13, 17, 37, 59}},
{{13, 17, 41, 43}},
{{13, 17, 43, 53}},
{{13, 17, 43, 71}},
{{13, 19, 29, 41}},
{{13, 19, 41, 47}},
{{13, 19, 47, 71}},
{{13, 23, 31, 53}},
{{13, 23, 37, 47}},
{{13, 23, 37, 53}},
{{13, 23, 43, 47}},
{{13, 23, 43, 71}},
{{13, 23, 47, 67}},
{{13, 23, 53, 61}},
{{13, 29, 37, 47}},
{{13, 29, 67, 71}},
{{13, 37, 47, 53}},
{{13, 41, 43, 47}},
{{13, 41, 43, 53}},
{{13, 43, 53, 71}},
{{17, 19, 23, 31}},
{{17, 19, 23, 61}},
{{17, 19, 23, 67}},
{{17, 19, 31, 53}},
{{17, 19, 37, 47}},
{{17, 19, 37, 53}},
{{17, 19, 43, 47}},
{{17, 19, 53, 67}},
{{17, 19, 61, 71}},
{{17, 29, 37, 43}},
{{17, 29, 43, 67}},
{{17, 31, 59, 61}},
{{17, 37, 43, 47}},
{{17, 43, 47, 67}},
{{17, 43, 53, 67}},
{{19, 23, 29, 31}},
{{19, 23, 29, 61}},
{{19, 23, 31, 47}},
{{19, 23, 31, 59}},
{{19, 23, 37, 41}},
{{19, 23, 37, 47}},
{{19, 23, 37, 71}},
{{19, 23, 41, 67}},
{{19, 23, 47, 61}},
{{19, 29, 31, 53}},
{{19, 29, 59, 61}},
{{19, 37, 41, 53}},
{{19, 37, 41, 71}},
{{19, 41, 43, 47}},
{{19, 41, 67, 71}},
{{19, 47, 61, 71}},
{{19, 59, 61, 71}},
{{23, 37, 43, 47}},
{{23, 37, 43, 71}},
{{23, 37, 47, 67}},
{{23, 43, 47, 61}},
{{29, 31, 37, 41}},
{{29, 31, 37, 71}},
{{29, 31, 41, 67}},
{{29, 31, 53, 67}},
{{29, 37, 41, 61}},
{{29, 41, 43, 67}},
{{31, 37, 41, 59}},
{{31, 41, 59, 67}},
{{31, 47, 59, 61}},
{{31, 47, 61, 71}},
{{37, 43, 59, 71}},
{{37, 47, 53, 67}},
{{37, 53, 59, 61}},
{{37, 53, 59, 67}},
{{43, 47, 59, 61}},
{{43, 53, 67, 71}}

That is just for primes up to 71. Looks like there is an infinite number. I can see no reason why it should stop.

phanthanhtom
2013-06-16 14:11:10

One more problem:
I have checked  the prime numbers table <6000. The number of prime quadruplets are 9 (excluding 5-7-11-13), and the number of near-quadruplets (i.e. exactly one number missing, if this number is added it makes a 10k+1, 10k+3, 10k+7 and 10k+9 quadruplet) is 37.
37/9=4.25 rounds to 4 = 4C3 (combination without repetition). Interesting!

phanthanhtom
2013-06-15 21:23:22

There might be an infinite number of solutions. I think so.
And there might be two pairs of the same numbers. Or a = b and c = d. As long as not all of them are the same. (In fact I acknowledge that that sentence is redundant)

bobbym
2013-06-15 19:55:30

Hi phanthanhtom;

First thing you have to do is change this:



because of this

Find all sets of 4 different prime numbers (a, b, c, d)

And I am finding many solutions. Perhaps there are an infinite number. Or perhaps something is wrong in my method.

phanthanhtom
2013-06-15 18:38:51

Find all sets of 4 different prime numbers (a, b, c, d) with

such that the sum of any three out of these four primes are also prime.
In other words, find positive integers a, b, c, d such that a, b, c, d, a+b+c, a+b+d, a+c+d and b+c+d are eight different primes.

Board footer

Powered by FluxBB