Math Is Fun Forum
  Discussion about math, puzzles, games and fun.   Useful symbols: √ ∞ ≠ ≤ ≥ ≈ ⇒ ∈ Δ θ ∴ ∑ ∫ π -

Login

Username

Password

Not registered yet?

Post a reply

Go back

Write your message and submit
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool: | :dizzy :eek :kiss :roflol :rolleyes :shame :down :up :touched :sleep :wave :swear :tongue :what :faint :dunno
Options

Go back

Topic review (newest first)

bobbym
2012-11-17 14:14:59

Hi;

You are welcome!

zehao1000
2012-11-17 14:05:44

Oh, thanks! Now I get the whole thing.

bobbym
2012-11-17 14:02:58

Hi;

zehao1000
2012-11-17 13:58:49

Yes, that is correct, I'm just trying to understand the solution by myself, so if 26/81 is the probability, then m+n is equal to 26+81 which is 107, which is the final answer, but the solution is confusing, since it's all probability.

bobbym
2012-11-17 13:56:25

I am getting 26 / 81 as the probability one of the numbers is a square.

zehao1000
2012-11-17 13:52:54

Because this problem was in a 2010 contest so though I still thought that it was 2012, but now the problem seems to make much more sense.

bobbym
2012-11-17 13:47:22

Hi;

Yes, 2010^2 has 81 factors.

zehao1000
2012-11-17 13:46:07

OH-NO, sorry! I got the whole problem wrong! It's suppose be 2010, not 2012 and 2010^2 has 81 factors, I can't believe that just a difference of 2 can make such a huge difference, now I hope that this problem is much more clear! I actually though that 5 was a factor of 2012!

bobbym
2012-11-17 13:37:51

Hi;

That is not correct 2012^2 only has 15 factors not 81. The list I gave in post #4 are the only positive factors.

so 2012^2 has a prime factorization of 2^2*3^2*5^2*67^2

You have factored 2012^2 incorrectly.

zehao1000
2012-11-17 13:31:55

It does look weird that 2012^2 has that many factors, but 2012 has a prime factorization of 2*3*5*67, so 2012^2 has a prime factorization of 2^2*3^2*5^2*67^2 and that leads to the fact that (2+1)^4 is the number of factors that 2012^2 has, though only 16 of them are perfect squares, so the question is simplified to what is the probability of getting only 1 perfect square out of 2 if the probability of getting a square is 16/81. I also doubt that 2012^2 has 81 factors, but that's what the formula calculates, but I think I get the question now, but anyways, sorry to bother you with all these random things I said above, the only reason why I want to have the answer to this problem is because it fascinates me and is a really good probability problem for me.

bobbym
2012-11-17 13:15:47

I am not claiming it is an efficient idea but I have to know the sample space before we can get the probability. I am getting only 15 divisors of 2012^2 not 81. That is why I am asking for your list.

zehao1000
2012-11-17 13:13:04

I can't list them all, let's see.....: 1,2,4,16,253009,1012036, 2024072,4048144, these are only the half of the perfect square factors of 2012^2, there are 8 more of them, how to solve the problem goes like this: (2+1)^4 is the number of factors that 2012^2 has and (1+1)^4 is the number of factors that 2012^2 has that are perfect squares, so the probability is [2*2^4*(3^4-2^4)]/[3^4(3^4-1)=26/81 so the answer is 26+81=107, which is m+n, this looks more like a bunch of random numbers placed together and I personally think that knowing the answer with knowing how to do it is useless, so I just need an explanation of this, you are only given 12 minutes to do this, I don't think listing out all the positive divisors of 2012^2 is a efficient idea!

bobbym
2012-11-17 12:55:19

Hi;

Can you post the divisors of 2012 ^2 please?

I am getting 16 and proper divisors only 15.

zehao1000
2012-11-17 12:50:55

Actually, the number of divisors that 2012^2 has is (2+1)^4, the problem is to find the sum of the numerator+denomerator of the probability of the chance that only ONE of the two divisors is a perfect square, the number of divisors that 2012 has is (1+1)^4 and this is also the number of perfect square divisors 2012^2 has, I'm very bad at probability and can't figure what is the probability of only one of the divisors being a perfect square.

bobbym
2012-11-17 12:45:03

Hi;

Does your list of divisors look like this?

Board footer

Powered by FluxBB