Math Is Fun Forum
  Discussion about math, puzzles, games and fun.   Useful symbols: √ ∞ ≠ ≤ ≥ ≈ ⇒ ∈ Δ θ ∴ ∑ ∫ π -

Login

Username

Password

Not registered yet?

Post a reply

Go back

Write your message and submit
:) :| :( :D :o ;) :/ :P :lol: :mad: :rolleyes: :cool: | :dizzy :eek :kiss :roflol :rolleyes :shame :down :up :touched :sleep :wave :swear :tongue :what :faint :dunno
Options

Go back

Topic review (newest first)

bobbym
2012-10-27 14:25:25

Hi;

So the close a is to x,the better

Exactly. The Taylor polynomial has a limited range from the point of expansion.

Karrl
2012-10-27 11:44:29

So the close a is to x,the better

bobbym
2012-10-27 04:07:23

The purpose of the series is to numerically evaluate a value of a function.
An example will make all of it clearer.

Supposing you want to evaluate sin(.1)? Taylor series usually only converge a small distance from the point of expansion. We choose zero because it is close to .1.



Now you plug into x the value that you are looking for. x = .1



The actual value of Sin(.1) is 0.09983341664682815

The approximation is a good one. This is an easy one. In practice they are usually trickier.

Karrl
2012-10-27 03:57:41

So,all values of a will estimate same?if not then what is the best value for a?

bobbym
2012-10-27 03:48:51

The formula or method used is slightly different. Here it is expanded around a and is called a Taylor series.

Karrl
2012-10-27 03:44:55

What is the difference in expanding around different points?

bobbym
2012-10-27 03:38:18



That is a Taylor series expanded around zero. When it is expanded around zero it is called a Mclaurin series.

Karrl
2012-10-27 03:29:02

Could you show me an example of taylor series(not the e^x,I know that)and explain how the series is found.

bobbym
2012-10-27 03:04:51

Any function that has derivatives that exist at the point of expansion. You can pick any point but that does not mean it will converge.
Sometimes the usual method will not work and you must use another.

Karrl
2012-10-27 03:00:05

So for f(p),p=x,and a is any point I want?And will there be taylor series for every function

bobbym
2012-10-27 02:31:19

Helps a lot to see the particular function you have in mind and what is the point of expansion.

x is the independent variable and a is the point of expansion.

Karrl
2012-10-27 02:30:28

If you meant the first formula,then what are the variables x and a?

bobbym
2012-10-27 02:30:18

Hi;

What is the function?

bob bundy
2012-10-27 02:20:00

hi Karrl

Welcome to the forum.

Yes, there is a formula.  Have a look at:

http://en.wikipedia.org/wiki/Taylor_series

Bob

Karrl
2012-10-27 02:13:51

How do I find taylor series of a function?Is there analysis method,formula or something else?

Board footer

Powered by FluxBB