Do you have a counter-example?

]]>goldbach conjecture is false]]>

He then went on saying that on wikipedia, you can make things "fact" as long as enough people agree with what you write. So he suggested making it a "fact" that the number of elephants had increased in the pass 6 months. Sure enough, in about 30 seconds (I had my computer handy), the elephants page said ath the top:

THE NUMBER OF ELEPHANTS HAS TRIPLED IN THE LAST SIX MONTHS!

Later (possibly now), the article was tagged:

(Protected Elephant: Colbert)

]]>OMG, They have individual pages for Simpson's episode!: http://en.wikipedia.org/wiki/Marge_Be_Not_Proud

(But we seem to be off the topic of the Riemann hypothesis ...)

]]>Wikipedia provides great

referencefor information. But it really only makes sense once you understand the topic. Don't get me wrong, it may help. But you are better off looking for a book or site which is meant to teach.

I agree - and I think it is a problem for Wikipedia. I have noticed articles that were simple and useful become more and more like something only a researcher would read.

(So "Help Me!" will still be useful!)

]]>Wikipedia provides great

referencefor information. But it really only makes sense once you understand the topic. Don't get me wrong, it may help. But you are better off looking for a book or site which is meant to teach.

Yes. You're right.

I like wikipedia, because i understand most of what i need.

someone may not.

If you don't know something (or don't understand it), there a great chance to understand it using Wiki.

Here's a wiki link for the riemann hyp:

http://en.wikipedia.org/wiki/Riemann_hypothesis]]>

1. Prove that if a divides c and b divides c, then ab divides c.

4|16 && 8|16 ,but 32 !| 16.

It's :

(a|c && b|c) =>gcd(a,b)|c.

For seven:

The topic is interesting. I think you're brave for posting it. I was not able to read your first posts, because they are DELETED!!!

You were asking for a statement, which cannot be proved with some set of axioms and which is true.

Here you're wrong. The "validality" of an statement depends on the set of axioms. There don't exist an universally true statemet, which is true for every set of axioms. So, if an statement A is unprovable over a set of axioms {X,Y,...,Z}, we can assume that it's true or it's false. If we assume that it's true, we are getting the new system: {X,Y,...,Z,A}, in which the statement is provable to be true.

But if we assume that A is false, over the set {X,Y,...,Z,!A}, A is provable to be false.

I hope you to understand.

]]>