"What's the truth value of..."

]]>

For all x^2 = 1 implies x = -1.

Does the u=R at the end mean that R (the reals) is the universal set? If so, I think you meant:

For all x in R, x^2 = 1 implies x = -1.

Now to make this statement false, all we have to do is find 1 value x in the reals, such that x^2 = 1 and x <> -1. (<> means does not equal).

Can you find it?

]]>now my question is, what is the truth value of:

Ax[(x^2=1) implies (x=-1)] u=R

thanks

]]>