lim as x->0+ of x, which goes towards 0. Are you sure you didn't mean maximum? That's how this question is usually given.

]]>diagonal a constant # like sqrt(200), but any # is fine.

Then I realized if height or width approaches 0, but is just

tiny bit over zero like 0.01, then you will get the

minimum area or product, but still have a diagonal length

of sqrt(200). So the minimum product approaches zero,

I think.]]>

a^2 + b^2 = 200

So a*b = √(200 - b^2) * b

So you want to find the minimum of that function. Take a derivative, find the critical points, and test each one.

Hint: You should come up with 2 critical points, only one will be within your domain (i.e. positive).

]]>The sum of the squares of two positive numbers is 200. The minimum product of these two numbers is?

So I set up an equaiton...

a²+b²=200

So do I need to substitute one variable in for the other and solve the derivative of ab?

]]>