really the appreciate help on forum thanks all.

]]>You should be able to do problem now easily.

]]>but really hit a wall here.

i got the hang of easy ones but the book throws in different ones without explaining ><

i know i have to some how extract the 9 so that it is same term as the other one.

but cant work out how.

following what phrontister said in post #4

i would square the 2 to make it a 4 then times that by 9 and get 36 is that the first step?

im probably just clicking buttons here but

if above true its written

am i able to write this as

if thats right it makes sense or is it just gorilla math

]]>Looks like I was close, the main difference being my non-technical wording (which I've now improved in my post) and that I referred to finding the largest perfect square (which I think is correct because simplification is to the lowest form, not an intermediate one...which a lower perfect square - if it exists - would give).

Re the wording of the following:

To summarize, then, a radical can be simplified if the following statements are true:

I would have written that as:

To summarize, then, a radical can be simplified if one or more of the following statements are true:

...for obvious reasons.

]]>]]>

i sort of understand, enough to do the exercises now but not really comfortable with it.

i will redo the chapter and reread these posts (:

thanks again

]]>*Edit: I'm not sure if I should have posted this because I don't know the proper method (I've forgotten more than I learnt!), and there's probably a better (or 'book') way to do it. My approach seems to work for these two problems, and so it may help in some way.*

I would look at the first problem like this...

- Find the largest perfect square in 32: ie, 16

- Place its square root (4) in front of the square root sign

- The remaining radicand is 2 (from 32/16 = 2).

The solution for the second problem is identical to that for the first:

- Find the largest perfect square in b³: ie, b²

- Place its square root (b) in front of the square root sign

- The remaining radicand is b (from b³/b² = b³⁻² = b¹ = b)

This next bit is just some additional info that may help with understanding what's going on, but is nothing to do with solving the problems:

The reverse process (ie, to 'unsimplify' the solutions and to revert to the original problems) would be to:

- square the number that is outside the sign (4) to become 16 (or b² for the variable), and

- multiply the result by the radicand to form a new radicand value (ie, 32, or b³).

That is one possible simplification.

because being unknown doesnt say how many times to do it

That is not quite correct, the exponent 3 tells you how many times to multiply it. It does not matter whether it is a variable or a constant.

]]>its because its an unknown right?

like b*b*b = b^3

b^2 * b

and we can write it as

because being unknown doesnt say how many times to do it >< my explanation is terrible but its close right?]]>i can do these ones i think

this one i dont understand ><

is that right S: but book says its wrong.

]]>