For years mathematicians have found it difficult to get law courts to understand Bayes theorem and use it properly in assessing evidence where probability plays a part so you may have even more trouble pursuading them to accept your stalker proof.

Bob

]]>I removed that last part for privacy reason.

]]>Hmm... Funny Posts ... Great

Which is further supportive evidence of the proposition that .....

Bob

]]>]]>

It is self evident that

I have gone to some length to prove that 2 + 2 = 4

Ask any 4 year old and they will tell you it was not necessary to prove this ... "Don't be silly; everyone knows this!"

Therefore I must have been doing something that is "an activity not in {compulsory activities}"

It follows that it must be in {pleasurable activities}.

Bob

]]>It would be hard not to!

]]>It is self evident that

And why is that?

bob bundy wrote:

I see you have given (-infinity,infinity) a nickname.

Yup!

]]>I see you have given (-infinity,infinity) a nickname.

B

]]>Just adding some more. Go back to post 7

B

]]>That's cool. Another contribution to our real world mathematics formulas. I think Real's friends will like it.

]]>I'm surprised that you didn't think the meaning of a word was important.

Just to keep my suggestion in 'best' position I have improved it a little.

definition:

definition:

definition:

Let x = {devising the following proof}

axiom 1. 2 = 1 + 1

axiom 2. 3 = 2 + 1

axiom 3. 4 = 3 + 1

rules of substitution apply

associativity applies

proof:

2 + 2 = 2 + (1 + 1) (by substitution and axiom 1)

= (2 + 1) + 1 (associativity)

= 3 + 1 (substitution and axiom 2)

= 4 (substitution and axiom 4)

therefore 2 + 2 = 4

It is self evident that

Hope you like this.

Bob

]]>The warm welcome was also well appreciated.

I'll see if there are any other ideas, but bob bundy's looks like the best one so far.

]]>Words have meanings. Dictionaries define those meanings.

So I chased around the definitions thus:

fun: bringing pleasure

doing something for pleasure: something you do because you want to rather than because you have to.

Now the proof.

We all know that 2 + 2 = 4

Only a mathematician would do the following:

axiom 1. 2 = 1 + 1

axiom 2. 3 = 2 + 1

axiom 3. 4 = 3 + 1

rules of substitution apply

associativity applies

proof:

2 + 2 = 2 + (1 + 1) (by substitution and axiom 1)

= (2 + 1) + 1 (associativity)

= 3 + 1 (substitution and axiom 2)

= 4 (substitution and axiom 4)

therefore 2 + 2 = 4

Only a mathematician would do this because they want to (clearly you don't have to do this)

Therefore math(s) is fun.

QED.

Bob

]]>Welcome to the forum.

All proofs require a set of axioms and rules for how elements may be combined.

Here's a simple example.

axiom 1. All 4 lettered words are fun.

rules of propositional calculus apply.

normal counting rules apply.

proof. math has 4 letters (by counting rule)

math is fun (by axiom 1)

Now I'm not seriously offering this as a useful mathematical theory. I have two main objections:

(i) the proof breaks down in the UK where the spelling is 'maths'

note the extra 's' in the address.

(ii) There are a lot of 4 lettered words that you wouldn't want to be proved to be fun!

So clearly more work is needed on the axioms, but it will give you the idea.

btw. proof by contradiction still uses the axiom system and rules of logic.

Bob

]]>